首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
This paper reprots that with Ni-based catalyst/solvent and with a dopant of NaN 3,large green single crystal diamonds with perfect shape are successfully synthesized by temperature gradient method under high pressure and high temperature in a China-type cubic anvil high-pressure apparatus (SPD-6×1200),and the highest nitrogen concentration reaches approximately 1214-1257 ppm calculated by infrared absorption spectra.The synthesis conditions are about 5.5 GPa and 1240-1300 C.The growth behaviour of diamond with high-nitrogen concentration is investigated in detail.The results show that,with increasing the content of NaN 3 added in synthesis system,the width of synthesis temperature region for growth high-quality diamonds becomes narrower,and the morphology of diamond crystal is changed from cube-octahedral to octahedral at same temperature and pressure,the crystal growth rate is slowed down,nevertheless,the nitrogen concentration doped in synthetic diamond increases.  相似文献   

2.
In this paper,we report on the influence of annealing treatment on as-grown Ib-type diamond crystal under high pressure and high temperature in a china-type cubic anvil high-pressure apparatus.Experiments are carried out at a pressure of 7.0 GPa and temperatures ranging from 1700 C to 1900 C for 1 h.Annealing treatment of the diamond crystal shows that the aggregation rate constant of nitrogen atoms in the as-grown Ib-type diamond crystal strongly depends on diamond morphology and annealing temperature.The aggregation rate constant of nitrogen remarkably increases with the increase of annealing temperature and its value in octahedral diamond is much higher than that in cubic diamond annealed at the same temperature.The colour of octahedral diamond crystal is obviously reduced from yellow to nearly colorless after annealing treatment for 1 h at 1900 C,which is induced by nitrogen aggregation in a diamond lattice.The extent of nitrogen aggregation in an annealed diamond could approach approximately 98% indicated from the infrared absorption spectra.The micro-Raman spectrum reveals that the annealing treatment can improve the crystalline quality of Ib-type diamond characterized by a half width at full maximum at first order Raman peak,and therefore the annealed diamond crystals exhibit nearly the same properties as the natural IaA-type diamond stones of high quality in the Raman measurements.  相似文献   

3.
Nitrogen is successfully doped in diamond by adding sodium azide (NaN3 ) as the source of nitrogen to the graphite and iron powders. The diamond crystals with high nitrogen concentration, 1000-2200ppm, which contain the same concentrations of nitrogen with natural diamond, have been synthesized by using the system of iron-carbon- additive NAN3. The nitrogen concentrations in diamond increase with the increasing content of NAN3. When the content of NaN3 is increased to 0.7-1.3 wt. %, the nitrogen concentration in the diamond almost remains in a nitrogen concentration range from 1250ppm to 2200ppm, which is the highest value and several times higher than that in the diamond synthesized by a conventional method without additive NaN3 under high pressure and high temperature (HPHT) conditions.  相似文献   

4.
A series of diamond crystals doped with hydrogen is successfully synthesized using LiH as the hydrogen source in a catalyst-carbon system at a pressure of 6.0 GPa and temperature ranging from 1255 C to 1350 C.It is shown that the high temperature plays a key role in the incorporation of hydrogen atoms during diamond crystallization.Fourier transform infrared micro-spectroscopy reveals that most of the hydrogen atoms in the synthesized diamond are incorporated into the crystal structure as sp 3-CH 2-symmetric(2850 cm-1) and sp 3 CH 2-antisymmetric vibrations(2920 cm-1).The intensities of these peaks increase gradually with an increase in the content of the hydrogen source in the catalyst.The incorporation of hydrogen impurity leads to a significant shift towards higher frequencies of the Raman peak from 1332.06 cm-1 to 1333.05 cm-1 and gives rise to some compressive stress in the diamond crystal lattice.Furthermore,hydrogen to carbon bonds are evident in the annealed diamond,indicating that the bonds that remain throughout the annealing process and the vibration frequencies centred at 2850 and 2920 cm-1 have no observable shift.Therefore,we suggest that the sp 3 C-H bond is rather stable in diamond crystals.  相似文献   

5.
High-quality type IIa large diamond crystals are synthesized with Ti/Cu as nitrogen getter doped in an FeNi–C system at temperature ranging from 1230℃ to 1380℃ and at pressure 5.3–5.9 GPa by temperature gradient method. Different ratios of Ti/Cu are added to the Fe Ni–C system to investigate the best ratio for high-quality type IIa diamond. Then, the different content of nitrogen getter Ti/Cu(Ti : Cu = 4 : 3) is added to this synthesis system to explore the effect on diamond growth. The macro and micro morphologies of synthesized diamonds with Ti/Cu added, whose nitrogen concentration is determined by Fourier transform infrared(FTIR), are analyzed by optical microscopy(OM) and scanning electron microscopy(SEM), respectively. It is found that the inclusions in the obtained crystals are minimal when the Ti/Cu ratio is 4:3. Furthermore, the temperature interval for diamond growth becomes narrower when using Ti as the nitrogen getter.Moreover, the lower edge of the synthesis temperature of type IIa diamond is 25℃ higher than that of type Ib diamond.With the increase of the content of Ti/Cu(Ti : Cu = 4 : 3), the color of the synthesized crystals changes from yellow and light yellow to colorless. When the Ti/Cu content is 1.7 wt%, the nitrogen concentration of the crystal is less than 1 ppm.The SEM results show that the synthesized crystals are mainly composed by(111) and(100) surfaces, including(311)surface, when the nitrogen getter is added into the synthesis system. At the same time, there are triangular pits and dendritic growth stripes on the crystal surface. This work will contribute to the further research and development of high-quality type IIa diamond.  相似文献   

6.
Effects of NaN3 added in Fe-C system to synthesize nitric diamond at high pressure and high temperature are investigated. Diamond crystals with high nitrogen concentration are synthesized by the system of Fe-C and NaN3 additive at pressure 5.8 GPa and at temperatures 1750-1780 K for 15 min. The synthetic diamond crystals have a cubo-octahedral or octahedral shape with yellowish green or green colour. Some disfigurements are observed on the surfaces of most diamond crystals. The composition and content of inclusions formed by iron in diamond are changed and iron nitride is detected in diamond crystals synthesized with Fe-C-NaN3 additive. As the amount of NaN3 additive increases, Fe3C decreases and iron nitride increases with α-Fe being nearly constant. Moreover, the nitrogen concentrations in diamond crystals synthesized with 1.5 wt% NaN3 additive is up to 2250ppm in substitutional form.  相似文献   

7.
Large diamond single crystals doped with NiS are synthesized under high pressure and high temperature. It is found that the effects on the surface and shape of the synthesized diamond crystals are gradually enhanced by increasing the NiS additive amount. It is noted that the synthesis temperature is necessarily raised to 1280℃ to realize the diamond growth when the additive amount reaches 3.5% in the synthesis system. The results of Fourier transform infrared spectroscopy(FTIR) demonstrate that S is incorporated into the diamond lattice and exists in the form of C–S bond. Based on the FTIR results, it is found that N concentration in diamond is significantly increased, which are ascribed to the NiS additive. The analysis of x-ray photoelectron spectroscopy shows that S is present in states of C–S, S–O and C–S–O bonds. The relative concentration of S compared to C continuously increases in the synthesized diamonds as the amount of additive NiS increases. Additionally,the electrical properties can be used to characterize the obtained diamond crystals and the results show that diamonds doped with NiS crystals behave as n-type semiconductors.  相似文献   

8.
High-quality p-type boron-doped IIb diamond large single crystals are successfully synthesized by the temperature gradient method in a china-type cubic anvil high-pressure apparatus at about 5.5 GPa and 1600 K.The morphologies and surface textures of the synthetic diamond crystals with different boron additive quantities are characterized by using an optical microscope and a scanning electron microscope respectively.The impurities of nitrogen and boron in diamonds are detected by micro Fourier transform infrared technique.The electrical properties including resistivities,Hall coefficients,Hall mobilities and carrier densities of the synthesized samples are measured by a four-point probe and the Hall effect method.The results show that large p-type boron-doped diamond single crystals with few nitrogen impurities have been synthesized.With the increase of quantity of additive boron,some high-index crystal faces such as {113} gradually disappear,and some stripes and triangle pits occur on the crystal surface.This work is helpful for the further research and application of boron-doped semiconductor diamond.  相似文献   

9.
Micron grade boron-doped diamond crystals with octahedral morphology are successfully synthesized in a Fe-Ni- C-B system under high pressure and high temperature (HPHT). The effects of the additive boron on synthesis conditions, nucleation and growth, crystal morphology of diamond are studied. The synthesized micron grade diamond crystals were characterized by optical microscope (OM), scanning electron microscope (SEM), x-ray diffraction (XRD) and Raman spectroscopy. The research results show that the V-shaped section of synthetic diamond moves downwards to the utmost extent due to 0.3a wt% (a is a constant.) boron added in the synthesis system. The crystal colour is black, and the average crystal size is about 25μm. The crystal faces of synthetic diamond are mainly (111) face. The synthesis of this kind of diamond is few reported, and it will have important and widely applications.  相似文献   

10.
Large diamond crystals were successfully synthesized by a FeNi-C system using the temperature gradient method under high-pressure high-temperature conditions. The assembly of the growth cell was improved and the growth process of diamond was investigated. Effects of the symmetry of the carbon convection field around the growing diamond crystal were investigated systematically by adjusting the position of the seed crystal in the melted catalyst/solvent. The results indicate that the morphologies and metal inclusion distributions of the synthetic diamond crystals vary obviously in both symmetric and non-symmetric carbon convection fields with temperature. Moreover, the finite element method was applied to analyze the carbon convection mode of the melted catalyst/solvent around the diamond crystal. This work is helpful for understanding the growth mechanism of diamond.  相似文献   

11.
通过反应溅射的方法,制备了N掺杂的Ge2Sb2Te5(N-GST)薄膜,用作相变存储器的存储介质.研究表明,掺杂的N以GeN的形式存在,不仅束缚了Ge2Sb2Te5 (GST)晶粒的长大也提高了GST的晶化温度和相变温度.利用N-GST薄膜的非晶态、晶态面心立方相和晶态六方相的电阻率差异,能够在同一存储单元中存储三个状态,实现相变存储器的多态存储功能. 关键词: 相变存储器 多态存储 N掺杂 2Sb2Te5')" href="#">Ge2Sb2Te5  相似文献   

12.
OH and Cl doped Bi4Ge3O12 (BGO) single crystals had been grown by Vertical Bridgman (VB) method. The structure of these crystals was determined by XRD, the transmittance and emission spectra in near infrared region (NIR) were measured at room temperature. 5% OH doped BGO shows a significant emission band peaking around 1181 nm under 808 nm laser diodes (LDs) excitation, and the 5% Cl doped BGO exhibits a relatively weak emission band as well. 100% and 5% OH doped BGO show noticeable emission band centered at about 1346 nm under 980 nm LDs excitation.  相似文献   

13.
The photo-catalytic degradation of 1,2-dichloroethane (1, 2-DCE) using nitrogen-doped TiO2 photo-catalysts under fluorescent light irradiation was investigated. Highly pure TiO2 and nitrogen-doped TiO2 were prepared by a sol-gel method and characterized by thermo-gravimetric/differential-thermal analysis (TG/DTA), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and Fourier transform infrared (FTIR) spectroscopy. The results indicate that the photo-catalysts were mainly nano-size with an anatase-phase structure. The degradation reaction of 1,2-DCE was operated under visible-light irradiation, and the photo-catalytic oxidation was conducted in a batch photo-reactor with various nitrogen doping ratios (N/Ti = 0-25 mol%). The relative humidity (RH) was controlled at 0-20% and the oxygen concentration was controlled at 0-21%. The photo-degradation with nitrogen-doped TiO2 showed superior photo-catalytic activity compared to that for pure TiO2. TiO2 doped with 15 mol% nitrogen exhibited the best photo-catalytic efficiency under the tested conditions. The products from the 1,2-DCE photo-catalytic oxidation were CO2 and water; the by-products included dichloromethane, methyl chloride, ethyl chloride, carbon monoxide, and hydrogen chloride. The reaction pathway of 1,2-DCE indicates that oxygen molecules are the major factor that causes the degradation of 1,2-DCE in the gas phase.  相似文献   

14.
研究了Si3N4层在ZrN/Si3N4纳米多层膜中的晶化现象及其对多层膜微结构与力学性能的影响. 一系列不同Si3N4层厚度的ZrN/Si3N4纳米多层膜通过反应磁控溅射法制备. 利用X射线衍射仪、高分辨透射电子显微镜和微力学探针表征了多层膜的微结构和力学性能. 结果表明,由于受到ZrN调制层晶体结构的模板作用,溅射条件下以非晶态存在的Si3N4层在其厚度小于0.9 nm时被强制晶化为NaCl结构的赝晶体,ZrN/Si3N4纳米多层膜形成共格外延生长的柱状晶,并相应地产生硬度升高的超硬效应. Si3N4随层厚的进一步增加又转变为非晶态,多层膜的共格生长结构因而受到破坏,其硬度也随之降低.  相似文献   

15.
制备了四元铁磁性Heusler合金Co50Ni22Ga28:Fex(x=0,1.5,2,2.5),发现材料具有很好的机械性能,在加压、 弯曲和扭曲时都展现出很好的超弹性.室温时,在压力作用下,Co50Ni22< /sub>Ga28:Fe2单晶样品在[001]和[110]方向分别具有约4%和 6.7%的完全可恢复应变.Co50Ni22Ga28:Fe1.5单晶样品在室温下沿[001]和[110]方向的应力与应变σ-ε曲线的平台部分较缓, 但升温到100℃时,σ-ε曲线中表示超弹性应变的平台变平.Co50Ni22Ga28 :Fe2.5成分的单晶在[001]方向可得到5.5%的超弹性应 变.同时以上材料都显示出了明显的弹性各向异性. 关键词: 铁磁性Heusler合金 超弹性 50Ni22Ga28:Fex')" href="#">Co50Ni22Ga28:Fex  相似文献   

16.
乌晓燕  孔明  李戈扬  赵文济 《物理学报》2009,58(4):2654-2659
采用反应磁控溅射法制备了一系列具有不同Si3N4层厚度的AlN/Si3N4纳米多层膜,利用X射线衍射仪、高分辨透射电子显微镜和微力学探针表征了多层膜的微结构和力学性能.研究了Si3N4层在AlN/Si3N4纳米多层膜中的晶化现象及其对多层膜生长结构与力学性能的影响.结果表明,在六方纤锌矿结构的晶体AlN调制层的模板作用下,通常溅射条件下以非晶态存在的Si3N4层在其厚度小于约1nm时被强制晶化为结构与AlN相同的赝形晶体,AlN/Si3N4纳米多层膜形成共格外延生长的结构,相应地,多层膜产生硬度升高的超硬效应.Si3N4随层厚的进一步增加又转变为非晶态,多层膜的共格生长结构因而受到破坏,其硬度也随之降低.分析认为,AlN/Si3N4纳米多层膜超硬效应的产生与多层膜共格外延生长所形成的拉压交变应力场导致的两调制层模量差的增大有关. 关键词: 3N4纳米多层膜')" href="#">AlN/Si3N4纳米多层膜 外延生长 赝晶体 超硬效应  相似文献   

17.
OH doped and Bi-rich Bi4Ge3O12 (BGO) single crystals were grown by Vertical Bridgman (VB) method. The structure of these crystals was determined by XRD, and the emission spectra in visible and near infrared region (NIR) were measured at room temperature. The emission spectrum of Bi-rich BGO has extra peaks at 385, 367 and 357 nm, Bi-rich BGO after annealing in Ar at 500 °C for 5 h shows a significant emission band peaking around 1170 nm under 808 nm laser diodes (LDs) excitation, and OH doped BGO shows a noticeable emission band centered at about 1346 nm under 980 nm LDs excitation. A brief discussion is presented.  相似文献   

18.
吴叶青  苏良碧  徐军  陈红兵  李红军  郑丽和  王庆国 《物理学报》2012,61(17):177801-177801
采用坩埚下降法生长了Yb: CaF2-SrF2晶体,测试了该晶体的吸收和荧光光谱 以及在不同温度下晶体的热扩散系数和热膨胀系数,并且计算了晶体的热膨胀系数以及在常温下的热导率. 采用对比的方法,对晶体的吸收光谱,荧光光谱,热学性能进行了分析.从吸收和荧光光谱结果表明: 在掺杂相对较高浓度的SrF2的混晶中, Yb3+吸收截面和发射截面比较大. Yb: CaF2-SrF2 (19%)晶体在1040 nm附近的发射截面比较大,光谱也比较宽. 这说明在掺杂相同浓度Yb时,混晶中CaF2, SrF2的比例不同,晶体的光谱性质不同, 主要原因是在混晶中晶体的无序度不同,晶体对称性降低,形成低对称光学中心. 从热扩散系数计算的热导率结果看出晶体具有比较好的热导率.  相似文献   

19.
采用固相烧结法制备了六方晶型结构的MgTiO3粉体. 经高温原位X射线衍射分析(293-1473 K)进行了表征与确认,获得了晶胞参数及其随温度的变化,测量了高温原位拉曼光谱(273-1623 K),并运用第一性原理理论计算方法对应核实了拉曼谱峰的归属. 结果表明,随着温度升高,MgTiO3晶面间距和晶格常数增大,从而反映对于拉曼光谱较为敏感的键长和键角的变化;温致拉曼位移可以反映Ti-O,Mg-O等键长以及Ti-O-Ti,Ti-O-Mg与Mg-O-Mg等键角随温度的细微变化,相关关系则独立于温度,有效提升了原位拉曼光谱微探针诊断技术的分析能力;拉曼谱峰随温度升高而展宽,表明原子瞬间运动振幅加剧,弥散性增加,稳定性有所下降,但仍维持六方晶型. 关键词: 3')" href="#">MgTiO3 微结构 拉曼光谱 高温  相似文献   

20.
使用牛津震动样品磁强计(VSM)研究了Bi2Sr2CaCu2O8单晶的磁滞回线.在20到40K温度之间发现了反常的尖锋效应,随样品O含量的增加,发生尖锋效应的外场也相应提高.可以认为在尖峰效应处发生了由涡漩物质的有序固态到无序固态的相变,在有少量点缺陷存在的BSCCO单晶相图上,Bsp线终止于20K温度处,在20K以下温区没有发生准格子到涡漩玻璃的相变,涡漩固相始终以准格子形式存在;可以认为尖峰效 关键词: 2Sr2CaCu2O8单晶')" href="#">Bi2Sr2CaCu2O8单晶 磁滞回线 尖锋效应 相变  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号