首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
OH and Cl doped Bi4Ge3O12 (BGO) single crystals had been grown by Vertical Bridgman (VB) method. The structure of these crystals was determined by XRD, the transmittance and emission spectra in near infrared region (NIR) were measured at room temperature. 5% OH doped BGO shows a significant emission band peaking around 1181 nm under 808 nm laser diodes (LDs) excitation, and the 5% Cl doped BGO exhibits a relatively weak emission band as well. 100% and 5% OH doped BGO show noticeable emission band centered at about 1346 nm under 980 nm LDs excitation.  相似文献   

2.
This report presents the luminescence properties of Ce3+ and Pr3+ activated Sr2Mg(BO3)2 under VUV-UV and X-ray excitation. The five excitation bands of crystal field split 5d states are observed at about 46 729, 44 643, 41 667, 38 314 and 29 762 cm−1 (i.e. 214, 224, 240, 261 and 336 nm) for Ce3+ in the host lattice. The doublet Ce3+ 5d→4f emission bands were found at about 25 840 and 24 096 cm−1 (387 and 415 nm). The influence of doping concentration and temperature on the emission characteristics and the decay time of Ce3+ in Sr2Mg(BO3)2 were investigated. For Pr3+ doped samples, the lowest 5d excitation band was observed at about 42017 cm−1 (238 nm), a dominant band at around 35714 cm−1 (280 nm) and two shoulder bands were seen in the emission spectra. The excitation and emission spectra of Ce3+ and Pr3+ were compared and discussed. The X-ray excited luminescence studies show that the light yields are ∼3200±230 and ∼1400±100 photons/MeV of absorbed X-ray energy for the samples Sr1.86Ce0.07Na0.07Mg(BO3)2 and Sr1.82Pr0.09Na0.09Mg(BO3)2 at RT, respectively.  相似文献   

3.
The excitation spectra of M (M=Si4+, Ti4+) and Eu3+ co-doped BaZr(BO3)2, BaZrO3:Eu and La2Zr2O7:Eu in the vacuum ultraviolet (VUV) regions of 110-300 nm are investigated and the host-lattice absorption are characterized. The result indicated that BaZr(BO3)2:Eu3+ phosphor has a strong absorption under the VUV excitation, and in the host-lattice excitation, the strong band at 130-160 nm could be due to the BO3 atomic groups; the band at 160-180 nm is related to the excitation of Ba-O; 180-200 nm corresponds to the charge transfer (CT) transition of Zr-O. The band at 200-235 nm due to the CT band of Eu3+-O2− and a bond valence study explained the observed weak CT band of Eu3+-O2− in the excitation spectra of BaZr(BO3)2:Eu3+. The emission results show that Si4+ can sensitize luminescence in the host of BaZr(BO3)2:Eu but Ti4+ has no improvement effect on luminescence.  相似文献   

4.
Nanocrystalline powders with various Eu3+ concentration (from 1 to 10 mol %) doped La2O3 were prepared via a combustion route. Their structure and morphology were characterized using X-ray diffraction (XRD) and High-resolution transmission electron microscopy. The emission spectra of the as-synthesized samples show that the strongest emission position is centered at 626 nm corresponding to 5D07F2 transition of Eu3+ ions and the intensity change of 626 nm emission is considered as a function of ultraviolet (240 nm) irradiation time. The excitation spectra at 626 nm monitoring indicate that the charge transfer state band is varies with different Eu3+ ion concentration. These results are attributed to the surface defects of the nanocrystals.  相似文献   

5.
Host-lattice emission, energy transfer and degradation processes are characterized in undoped and Eu-doped BaMgAl10O17. Undoped BaMgAl10O17 exhibits a broad emission centered at 265 nm when excited at wavelengths shorter than 190 nm. This emission is assigned to exciton recombination at Ba-O groups in the cation layer of the lattice. The emission exhibits excellent overlap with the excitation band of Eu2+ in this host, providing a means of host-to-activator energy transfer in the doped phosphor. The exciton emission is relatively stable to thermal damage, but undergoes a peak shift and significant decrease in intensity after exposure to VUV radiation. Heating of VUV-damaged materials in air leads to some repair of the spectral properties.  相似文献   

6.
Nominally pure and Tm3+-doped LiCaAlF6 crystals were grown by the Czochralski technique in a reducing atmosphere. The optical properties of transparent single crystals were studied using absorption and time-resolved luminescence spectroscopy in the VUV spectral range (330-100 nm). The strongest VUV emission peaking at 60 800 cm−1 with a decay time of 5.6 μs (7 μs) at 300 K (7.4 K) was assigned to the spin-forbidden 4f115d-4f12 transition of Tm3+. The fine structure observed in the VUV emission and corresponding excitation spectra indicate intermediate strength of electron-phonon coupling in this system. The efficient excitation of f-f emissions above 72 000 cm−1, higher than the onset of f-d absorption at 63 000 cm−1, is mainly caused by the F to Tm3+ charge transfer absorption. The nature of various host-related excitation processes in the energy transfer to the Tm3+ ions is discussed.  相似文献   

7.
Up-conversion blue emissions of trivalent thulium ions in monoclinic KGd(WO4)2 single crystals at 454 and 479 nm are reported for a single pump laser source at 688 nm. We grew thulium-doped KGd(WO4)2 single crystals at several concentrations from 0.1% to 10%. We recorded a polarized optical absorption spectrum for the 3F2+3F3 energy levels of thulium at room temperature and low temperature (6 K). From the low temperature emission spectra we determined the splitting of the 3H6 ground state. The blue emissions are characterized as a function of the dopant concentration and temperature from 10 K to room temperature. To our knowledge, this is the first time that sequential two-photon excitation process (STEP) generated blue emissions in thulium-doped single crystals with a single excitation wavelength.  相似文献   

8.
5 mol% of Pr3+ and Tm3+ ions activated calcium gadolinium tungstate (Ca2Gd2W3O14) phosphors were synthesized by traditional solid state reaction method. Crystalline phase structure was identified from the X-ray diffraction (XRD) profiles. From the scanning electron microscopy (SEM) images, we have observed the agglomeration of the particles, and average grain size is around 40-300 nm. Using the energy dispersive X-ray analysis (EDAX) and Fourier transform infrared (FTIR) spectra, identified the elements and functional groups present in the prepared phosphors. The emission spectrum of Pr3+: Ca2Gd2W3O14 powder phosphors have shown an intense red emission at 615 nm with the excitation wavelength λexci=450 nm and thus these red color emitting powder phosphors are used as one of the components in the preparation of WLEDs. The excitation spectrum of Tm3+: Ca2Gd2W3O14 powder phosphor has shown a ligand to metal charge transfer (W-O) band (LMCT) within the WO42− group. Emission spectrum of Tm3+: Ca2Gd2W3O14 phosphors have shown blue emissions at 453 nm (1D23F4).  相似文献   

9.
The upconverted VUV (185 nm) and UV (230 and 260 nm) luminescence due to 5d-4f radiative transitions in Nd3+ ions doped into a LiYF4 crystal has been obtained under excitation by 351/353 nm radiation from a XeF excimer laser. The maximum upconversion efficiency, defined as the ratio of intensity for 5d-4f luminescence to overall intensity for 5d-4f and 4f-4f luminescence from the 4D3/2 Nd3+ level, has been estimated to be about 70% under optimal focusing conditions for XeF laser radiation. A redistribution of intensity between three main components of 5d-4f Nd3+ luminescence is observed under changing the excitation power density, which favors the most long-wavelength band (260 nm) at higher excitation density level. The effect is interpreted as being due to excited state absorption of radiation emitted. The upconverted VUV and UV luminescence from the high-lying 2F(2)7/2 4f level of Er3+ doped into a LiYF4 crystal has also been obtained under XeF-laser excitation the most intense line being at 280 nm from the spin-allowed transition to the 2H(2)11/2 4f level of Er3+, but the efficiency of upconversion for Er3+ emission is low, less than 5%.  相似文献   

10.
A simple combustion route was employed for the preparation of Eu3+-doped MgAl1.8Y0.2−xO4 nanocrystals using metal nitrates as precursors and urea as a fuel in a preheated furnace at 500 °C. The powders thus obtained were then fired at 1000 °C for 3 h to get better luminescent properties. The incorporation of Eu3+ activator in these nanocrystals was checked by luminescence characteristics. These nanocrystals displayed bright red color on excitation under 254 nm UV source. The main emission peak was assigned to the transition [5D07F2] at 615 nm. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) studies were carried out to understand surface morphological features and the particle size. Crystal structures of the nanocrystals were investigated by the X-ray diffraction (XRD) technique. The crystallite size of the as-prepared nanocrystals was around 29 nm, which was evaluated from the broad XRD peaks. The crystallite size increased to ∼45 nm on further heat treatment at 1000 °C.  相似文献   

11.
RE3+-activated α- and β-CaAl2B2O7 (RE=Tb, Ce) were synthesized with the method of high-temperature solid-state reaction. Their VUV excitation and VUV-excited emission spectra are measured and discussed in the present article. The charge transfer band of Tb3+ and Ce3+ is respectively calculated to be at 151±2 and 159±3 nm. All the samples show an activator-independent excitation peak at about 175 nm and an emission peak at 350-360 nm ascribed to the host absorption and emission band, respectively.  相似文献   

12.
In this paper we report the combustion synthesis of trivalent rare-earth (RE3+ = Dy, Eu and Ce) activated Sr4Al2O7 phosphor. The prepared phosphors were characterized by the X-ray powder diffraction (XRD) and photoluminescence (PL) techniques. Photoluminescence emission peaks of Sr4Al2O7:Dy3+ phosphor at 474 nm and 578 nm in the blue and yellow region of the spectrum. The prepared Eu3+ doped phosphors were excited by 395 nm then we found that the characteristics emission of europium ions at 615 nm (5D0?7F2) and 592 nm (5D0?7F1). Photoluminescence (PL) peaks situated at wavelengths of 363 and 378 nm in the UV region under excitation at around 326 nm in the Sr4Al2O7:Ce3+ phosphor.  相似文献   

13.
Vacuum ultraviolet (VUV) excitation and photoluminescence (PL) properties of Sr(Y, Gd)2O4 doped with Eu3+ were studied. The excitation spectra of SrY1.9Eu0.1O4 and SrY1.0Gd0.9Eu0.1O4 had absorption in the VUV region with the absorption band edge at 149 nm, while the absorption of SrGd1.9Eu0.1O4 in the VUV region was weak, which could be due to the narrow host band gap and no efficient energy transfer occurred in the VUV region. The PL spectra of all samples exhibited the characteristic emission of Eu3+ with the red 5D0-7F2 transition (611 nm) being the most prominent group.  相似文献   

14.
Europium doped BaAl12O19 powder phosphors have been synthesized by combustion process within few minutes. The phosphors have been characterized by XRD, SEM, FT-IR, EPR and PL techniques. The EPR spectrum exhibits an intense resonance signal at g=1.96 characteristic of Eu2+ ions. In addition to this two weak resonance signals have been observed at g=2.28 and g=4.86. The population of the spin levels (N) for the resonance signal at g=1.96 is calculated as a function of temperature. By post-treating the phosphor at 1350 °C under a reducing atmosphere, it is observed that the population of spin levels has been increased five times. The excitation spectrum shows a peak at 326 nm with a shoulder at 290 nm. Upon excitation at 326 nm, the emission spectrum exhibits a well defined broad band with maximum at 444 nm emitting a blue light corresponding to 4f65d→4f7 transition. The luminescence intensity also has been enhanced to 60% by post-treating the phosphor at 1350 °C under a reducing atmosphere.  相似文献   

15.
A novel green phosphor, Tb3+ doped Bi2ZnB2O7 was synthesized by conventional solid state reaction method. The phase of synthesized materials was determined using the XRD, DTA/TG and FTIR. The photoluminescence characteristics were investigated using spectrofluorometer at room temperature. Bi2ZnB2O7:Tb3+ phosphors excited by 270 nm and 485 nm wavelengths. The emission spectra were composed of three bands, in which the dominated emission of green luminescence Bi2ZnB2O7:Tb3+ attributed to the transition 5D4 → 7F5 is centered at 546 nm. The dependence of the emission intensity on the Tb3+ concentration for the Bi2−xTbxZnB2O7 (0.01 ≤ x ≤ 0.15) was studied and observed that the optimum concentration of Tb3+ in phosphor was 13 mol% for the highest emission intensity at 546 nm.  相似文献   

16.
The red phosphors NaY1−xEux(WO4)2 with different concentrations of Eu3+ were synthesized via the combustion synthesis method. As a comparison, NaEu(WO4)2 was prepared by the solid-state reaction method. The phase composition and optical properties of as-synthesized samples were studied by X-ray powder diffraction and photoluminescence spectra. The results show that the red light emission intensity of the combustion synthesized samples under 394 nm excitation increases with increase in Eu3+ concentrations and calcination temperatures. Without Y ions doping, the emission spectra intensity of the NaEu(WO4)2 phosphor prepared by the combustion method fired at 900 °C is higher than that prepared by the solid-state reaction at 1100 °C. NaEu(WO4)2 phosphor synthesized by the combustion method at 1100 °C exhibits the strongest red emission under 394 nm excitation and appropriate CIE chromaticity coordinates (x=0.64, y=0.33) close to the NTSC standard value. Thus, its excellent luminescence properties make it a promising phosphor for near UV InGaN chip-based red-emitting LED application.  相似文献   

17.
Thin films of ZnWO4 and CdWO4 were prepared by spray pyrolysis and the structural, optical, and luminescence properties were investigated. Both ZnWO4 and CdWO4 thin films showed a broad blue-green emission band. The broad band of ZnWO4 films was centered at 495 nm (2.51 eV) consisted of three bands at 444 nm (2.80 eV), 495 nm (2.51 eV) and 540 nm (2.30 eV). The broad band of CdWO4 films at 495 nm (2.51 eV) could be decomposed to three bands at 444 nm (2.80 eV), 495 nm (2.51 eV) and 545 nm (2.28 eV). These results are consistent with emission from the WO66− molecular complex. The luminance and efficiency for ZnWO4 film at 5 kV and 57 μA/cm2 were 48 cd/m2 and 0.22 lm/w, respectively, and for CdWO4 film the values were 420 cd/m2 and 1.9 lm/w.  相似文献   

18.
In this study, green-emitting Na2CaPO4F:Eu2+ phosphors were synthesized by solid-state reactions. The excitation spectra of the phosphors showed a broad hump between 250 and 450 nm; the spectra match well with the near-ultraviolet (NUV) emission spectra of light-emitting diodes (LEDs). The emission spectrum showed an intense broad emission band centered at 506 nm. White LEDs were fabricated by integrating a 390 nm NUV chip comprising blue-emitting BaMgAl10O17:Eu2+, green-emitting Na2CaPO4F:0.02 Eu2+, and red-emitting CaAlSiN3:Eu2+ phosphors into a single package; the white LEDs exhibited white light with a correlated color temperature of 5540 K, a color-rendering index of 90.75, and color coordinates (0.332, 0.365) close to those of ideal white light.  相似文献   

19.
The Ca2.95−yDy0.05B2O6:yNa+ (0≤y≤0.20) phosphors were synthesized at 1100 °C in air by the solid-state reaction route. The as-synthesized phosphors were characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), photoluminescence excitation (PLE), photoluminescence (PL) spectra and thermoluminescence (TL) spectra. The PLE spectra show the excitation peaks from 300 to 400 nm due to the 4f-4f transitions of Dy3+. This mercury-free excitation is useful for solid-state lighting and light-emitting diodes (LEDs). The emission of Dy3+ ions on 350 nm excitation was observed at 480 nm (blue) due to the 4F9/26H15/2 transitions, 575 nm (yellow) due to 4F9/26H13/2 transitions and 660 nm (red) due to weak 4F9/26H11/2 emissions. The PL results from the investigated Ca2.95−yDy0.05B2O6:yNa+ phosphors show that Dy3+ emissions increase with the increase of the Na+ codoping ions. The integral intensity of yellow to blue (Y/B) can be tuned by controlling Na+ content. By the simulation of white light, the optimal CIE value (0.328, 0.334) can be achieved when the content of Na+-codoping ions is y=0.2. The results imply that the Ca2.95−yDy0.05B2O6:yNa+ phosphors could be potentially used as white LEDs.  相似文献   

20.
Infrared optical absorption has been used to study OHimpurities into congruent co-doped LiNbO3:Cr3+:ZnO crystals doped with different Zn2+ concentration. The OH IR absorption spectra present three bands that can be associated with different OH complex centres available in the lattice. For crystals with lower Zn2+ concentrations (<4.7%) only one IR absorption band centred at 2867 nm (3490 cm−1) is reported which is associated with the OH unperturbed vibration. For crystals with higher Zn2+ concentrations (>4.7%), two new bands associated with OHvibration in distortion environment are reported. These bands are centred at 2827 nm (3537 cm−1) and 2847 nm (3512 cm−1) and can be associated with OH-Zn2+ and Cr3+(Li+)-OH-Zn2+(Int.) complex centres, respectively. Electron paramagnetic resonance (EPR) has been used to identify the Cr3+ centres in the lattice of the doped LiNbO3:ZnO crystals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号