首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sparse ZnO nanorod arrays(NRAs)are fabricated on transparent conducting oxide coated glass substrates by using a modified liquid phase epitaxial growth method.By adjusting the polymer concentrations and the spin-coating parameters,full infiltration of poly(3-hexylthiophene)(P3HT)into the as-prepared ZnO NRAs is achieved at 130°C in vacuum.A third component is incorporated into the P3HT/ZnO NRAs ordered bulk heterojunctions(BHJs)either through ZnO surface modification with N719dye or CdS shell layer or by inclusion of a fullerene derivative into the P3HT matrix.Experimental results indicate that performances of the hybrid solar cells are improved greatly with the incorporation of a third component.However,the working principles of these third components differ from one another,according to morphology,structure,optical property,charge transfer and interfacial properties of the composite structures.An ideal device architecture for hybrid solar cells based on P3HT/ZnO NRAs ordered BHJs is proposed,which can be used as a guidance to further increase the power conversion efficiency of such solar cells.  相似文献   

2.
In this paper,InGaN/GaN multiple quantum well solar cells (MQWSCs) with an In content of 0.15 are fabricated and studied.The short-circuit density,fill factor and open-circuit voltage (V oc) of the device are 0.7 mA/cm 2,0.40 and 2.22 V,respectively.The results exhibit a significant enhancement of V oc compared with those of InGaN-based hetero and homojunction cells.This enhancement indicates that the InGaN/GaN MQWSC offers an effective way for increasing V oc of an In-rich In x Ga 1 x N solar cell.The device exhibits an external quantum efficiency (EQE) of 36% (7%) at 388 nm (430 nm).The photovoltaic performance of the device can be improved by optimizing the structure of the InGaN/GaN multiple quantum well.  相似文献   

3.
InGaN/GaN p-i-n solar cells, each with an undoped In0.12Ga0.88N absorption layer, are grown on c-plane sapphire substrates by metal-organic chemical vapor deposition. The effects of the thickness and dislocation density of the absorp- tion layer on the collection efficiency of InGaN-based solar cells are analyzed, and the experimental results demonstrate that the thickness of the InGaN layer and the dislocation density significantly affect the performance. An optimized InGaN- based solar cell with a peak external quantum efficiency of 57% at a wavelength of 371 nm is reported. The full width at half maximum of the rocking curve of the (0002) InGaN layer is 180 arcsec.  相似文献   

4.
王丽师  徐建萍  石少波  张晓松  任志瑞  葛林  李岚 《物理学报》2013,62(19):196103-196103
本文通过化学浴沉积法获得了直径约为50 nm, 长度约为250 nm的ZnO纳米棒阵列, 引入纳米ZnS对ZnO纳米棒进行表面修饰, 分别制备得到了具有ITO (indium tin oxides)/ZnO/Poly-(3-hexylthiophene) (P3HT)/Au和ITO/ZnO@ZnS/P3HT/Au结构的多层器件. 通过I-V曲线对比讨论了两种结构器件的开启电压, 串联电阻, 反向漏电流及整流比等参数, 认为包含ZnS修饰层器件的开启电压、串联电阻、反向漏电流明显降低, 整流比显著增强, 展现出更优异的电子传输性能. 光致发光光谱分析结果证实由于ZnS使ZnO纳米 棒的表面缺陷产生的非辐射复合被明显抑制, 弱化了电场激发下的载流子陷获, 改善了器件的导电特性. 关键词: ZnO纳米棒阵列 表面修饰 电流-电压特性  相似文献   

5.
刘诗涛  全知觉  王立 《中国物理 B》2017,26(3):38104-038104
Carrier transport via the V-shaped pits(V-pits) in InGaN/GaN multiple-quantum-well(MQW) solar cells is numerically investigated. By simulations, it is found that the V-pits can act as effective escape paths for the photo-generated carriers. Due to the thin barrier thickness and low indium composition of the MQW on V-pit sidewall, the carriers entered the sidewall QWs can easily escape and contribute to the photocurrent. This forms a parallel escape route for the carries generated in the flat quantum wells. As the barrier thickness of the flat MQW increases, more carriers would transport via the V-pits. Furthermore, it is found that the V-pits may reduce the recombination losses of carriers due to their screening effect to the dislocations. These discoveries are not only helpful for understanding the carrier transport mechanism in the InGaN/GaN MQW, but also important in design of the structure of solar cells.  相似文献   

6.
基于量子阱结构的高效磷光有机电致发光器件   总被引:1,自引:0,他引:1       下载免费PDF全文
采用多重量子阱结构制作了高效红色磷光有机电致发光器件。以4,4'-bis(N-carbazolyl)-1,10-biphenyl (CBP)掺杂bis(1-phenyl-isoquinoline)(Acetylacetonato) iridium(Ⅲ) (Ir(piq)2(acac))为发光层,4,4'-bis(N-carbazolyl)-1,10-biphenyl(Bphen)为电荷控制层,形成了Ⅱ型双量子阱结构,器件的最大亮度为15 000 cd/m2,最大电流效率为7.4 cd/A,相对于参考器件提高了21%。研究结果表明:以Bphen为电荷控制层形成的Ⅱ型多重量子阱结构能有效地将载流子和激子限制在势阱中,并且使空穴和电子的注入更加平衡,从而提高了载流子复合的几率和器件的效率。  相似文献   

7.
We performed detailed studies of the effect of polarization on III‐nitride solar cells. Spontaneous and piezoelectric polarizations were assessed to determine their impacts upon the open circuit voltages (VOC) in p–i(InGaN)–n and multi‐quantum well (MQW) solar cells. We found that the spontaneous polarization in Ga‐polar p–i–n solar cells strongly modifies energy band structures and corresponding electric fields in a way that degrades VOC compared to non‐polar p–i–n structures. In contrast, we found that piezoelectric polarization in Ga‐polar MQW structures does not have a large influence on VOC compared to non‐polar MQW structures. (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

8.
利用金属有机物化学气相沉积系统在蓝宝石衬底上通过有源层的变温生长,得到In组分渐变的量子阱结构,从而获得具有三角形能带结构的InGaN/GaN多量子阱发光二极管(LED)(简称三角形量子阱结构LED).变温光致发光谱结果表明,相对于传统具有方形能带结构的量子阱LED(简称方形量子阱结构LED),三角形量子阱结构有效提高了量子阱中电子和空穴波函数的空间交叠,从而增加了LED的内量子效率;电致发光谱结果表明,三角形量子阱结构LED器件与传统结构LED器件相比,明显改善了发光峰值波长随着电流的蓝移现象.通过以上  相似文献   

9.
Youming Huang 《中国物理 B》2022,31(12):128802-128802
All-inorganic, hole-transporting-layer-free CsPbIBr2 perovskite solar cells have great potential for development, but their device performance needs to be further improved. Recently, metal nanostructures have been successfully applied in the field of solar cells to improve their performance. Nano Ag-enhanced power conversion efficiency (PCE) in one CsPbIBr2 perovskite solar cell utilizing localized surface plasmons of Ag nanoparticles (NPs) on the surface has been researched experimentally and by simulation in this paper. The localized surface plasmon resonance of Ag NPs has a near-field enhancement effect, which is expected to improve the light absorption of CsPbIBr2 perovskite photovoltaic devices. In addition, Ag NPs have a forward-scattering effect on the incident light, which can also improve the performance of CsPbIBr2-based perovskite photovoltaic devices. By directly assembling Ag NPs (with a size of about 150 nm) on the surface of fluorine-doped tin oxide it is found when the particle surface coverage is 10%, the CsPbIBr2 perovskite photovoltaic device achieves a best PCE of 2.7%, which is 9.76% higher than that of the control group. Without changing any existing structure in the ready-made solar cell, this facile and efficient method has huge applications. To the best of our knowledge, this paper is the first report on nano Ag-enhanced photoelectric conversion efficiency in this kind of CsPbIBr2 perovskite solar cell.  相似文献   

10.
郑爽  张宏梅  王悦  黄维 《发光学报》2017,38(10):1346-1352
制备了以Zn Pc(OC8H17OPy CH3I)8为阴极缓冲层、P3HT∶PCBM为有源层的有机太阳能电池。对阴极缓冲层Zn Pc(OC8H17OPy CH3I)8薄膜分别进行了溶剂蒸汽退火和过渡舱惰性气体流退火处理,并利用原子力显微镜(AFM)对缓冲层表面形貌进行了表征。结果表明:这两种退火方法都使缓冲层形貌得以改善。电池效率从2.14%提高到3.76%,电流密度从8.12 m A/cm2提高到10.71 m A/cm2,填充因子从0.45提高到0.61。与传统器件相比,退火处理的阴极缓冲层器件的稳定性也得到了改善,器件寿命延长了1.4倍。这种简单阴极界面处理方法为改善聚合物太阳能电池性能提供了有效途径。  相似文献   

11.
利用湿化学法在FTO玻璃基底上制备了高度规整的ZnO纳米棒阵列(ZnO NRAs),以此为衬底,采用磁控溅射法在ZnO NRAs表面沉积Cu_2O薄膜。分别用X射线衍射仪、X射线光电子能谱、扫描电镜、光致光谱、紫外可见分光光度计和电化学工作站对样品的物相、形貌、吸收光谱、光电性能进行了表征,用甲基橙(MO)模拟有机物废水研究复合材料的光催化性能。结果表明:ZnO纳米棒为六方纤锌矿结构,其直径约为80~100 nm,长约2~3μm,棒间距约100~120 nm。立方晶系的Cu_2O颗粒直径约为100~300 nm,形成致密膜层并紧密覆盖在ZnO NRAs表面上,构成ZnO/Cu_2O异质结纳米阵列(ZnO/Cu_2O HNRAs)结构。与纯ZnO NRAs和Cu_2O相比,ZnO/Cu_2O HNRAs在可见光范围内的吸收显著增强,吸收波长向可见光方向偏移。ZnO/Cu_2O HNRAs的载流子传递界面的电荷转移速度快,有效促进了光生电子和空穴的分离。在紫外-可见光照射65 min后,ZnO/Cu_2O HNRAs的降解效率为94%,分别是纯ZnO NRAs和Cu_2O的18倍和1.7倍。  相似文献   

12.
於黄忠  温源鑫 《物理学报》2011,60(3):38401-038401
以MEH-PPV(poly(2-methoxy-5-(2'-ethylhexoxy)-1,4-phenylene vinylene))为电子给体材料, PCBM(1-(3-methoxycarbonyl)-propyl-1-1-phenyl-(6,6)C61)为电子受体材料, 制成了共混体系太阳电池.研究了不同厚度活性层对太阳电池性能的影响.结果表明, 活性层厚度为100 nm时,太阳电池具有最佳性能.活性层厚度的增加,增大了光生电荷的复合,减少了太阳电池的填充因子,从而减少了太阳电 关键词: 太阳电池 厚度 电极 性能  相似文献   

13.
InGaN/GaN multiple quantum well (MQW) solar cells with stepped-thickness quantum wells (SQW) are designed and grown by metal-organic chemical vapor deposition. The stepped-thickness quantum wells structure, in which the well thickness becomes smaller and smaller along the growth direction, reveals better crystalline quality and better spectral overlap with the solar spectrum. Consequently, the short-circuit current density (Jsc) and conversion efficiency of the solar cell are enhanced by 27.12% and 56.41% compared with the conventional structure under illumination of AM1.5G (100 mW/cm2). In addition, approaches to further promote the performance of InGaN/GaN multiple quantum well solar cells are discussed and presented.  相似文献   

14.
王桃红  陈长博  郭坤平  陈果  徐韬  魏斌 《中国物理 B》2016,25(3):38402-038402
The interface between the active layer and the electrode is one of the most critical factors that could affect the device performance of polymer solar cells. In this work, based on the typical poly(3-hexylthiophene):[6,6]-phenyl C61-butyric acid methyl ester(P3HT:PCBM) polymer solar cell, we studied the effect of the cathode buffer layer(CBL) between the top metal electrode and the active layer on the device performance. Several inorganic and organic materials commonly used as the electron injection layer in an organic light-emitting diode(OLED) were employed as the CBL in the P3HT:PCBM polymer solar cells. Our results demonstrate that the inorganic and organic materials like Cs_2CO_3, bathophenanthroline(Bphen), and 8-hydroxyquinolatolithium(Liq) can be used as CBL to efficiently improve the device performance of the P3HT:PCBM polymer solar cells. The P3HT:PCBM devices employed various CBLs possess power conversion efficiencies(PCEs) of 3.0%–3.3%, which are ca. 50% improved compared to that of the device without CBL. Furthermore, by using the doped organic materials Bphen:Cs_2CO_3 and Bphen:Liq as the CBL, the PCE of the P3HT:PCBM device will be further improved to 3.5%, which is ca. 70% higher than that of the device without a CBL and ca. 10% increased compared with that of the devices with a neat inorganic or organic CBL.  相似文献   

15.
采用在聚(3,4-乙撑二氧噻吩)∶聚苯乙烯磺酸(Poly(3,4-ethylenedioxythiophene)∶Poly(styrenesulfonate),PEDOT∶PSS)阳极界面层上直接旋涂二甲基亚砜(Dimethyl Sulfoxide,DMSO)的方法,对PEDOT∶PSS薄膜进行修饰,以提高所制得的钙钛矿太阳能电池器件性能.在5000rpm转速条件下旋涂DMSO后,器件的能量转换效率达到11.43%,与PEDOT∶PSS阳极界面层未做任何修饰的器件相比,效率提高了29.15%.测试表征了修饰前后PEDOT∶PSS薄膜的透光性、表面形貌、电导率、器件的外量子效率曲线以及器件在光照和暗态下的J-V特性曲线,分析了器件性能提高的原因.结果表明:经过修饰的PEDOT∶PSS薄膜导电性显著增强,从而更加有利于器件阳极对空穴的抽取和收集;较未修饰时,器件的短路电流密度得到了大幅度提升,进而使得器件获得更高的能量转换效率.  相似文献   

16.
The performance of a multiple quantum well (MQW) InGaN solar cell with double indium content is investigated. It is found that the adoption of a double indium structure can effectively broaden the spectral response of the external quantum efficiencies and optimize the overall performance of the solar cell. Under AM1.5G illumination, the short-circuit current density (Jsc) and conversion efficiency of the solar cell are enhanced by 65% and 13% compared with those of a normal single-indium-content MQW solar cell. These improvements are mainly attributed to the expansion of the absorption spectrum and better extraction efficiency of the photon-generated carriers induced by higher polarization.  相似文献   

17.
In this paper, we investigate the effects of glycerol doping on transmittance, conductivity and surface morphology of poly(3,4-ethylene dioxythiophene):poly(styrene sulfonate))(PEDOT:PSS) and its influence on the performance of perovskite solar cells.. The conductivity of PEDOT:PSS is improved obviously by doping glycerol. The maximum of the conductivity is 0.89 S/cm when the doping concentration reaches 6 wt%, which increases about 127 times compared with undoped. The perovskite solar cells are fabricated with a configuration of indium tin oxide(ITO)/PEDOT:PSS/CH_3NH_3PbI_3/PC_(61)BM/Al, where PEDOT:PSS and PC_(61)BM are used as hole and electron transport layers, respectively. The results show an improvement of hole charge transport as well as an increase of short-circuit current density and a reduction of series resistance, owing to the higher conductivity of the doped PEDOT:PSS. Consequently, it improves the whole performance of perovskite solar cell. The power conversion efficiency(PCE) of the device is improved from 8.57% to 11.03% under AM 1.5 G(100 mW/cm~2 illumination) after the buffer layer has been modified.  相似文献   

18.
为研究掺杂石墨烯量子点(GQDs)对聚合物电池的影响,采用溶剂热法制备了GQDs,掺杂到聚3-己基噻吩和富勒烯衍生物(P3HT∶PCBM)中作光敏层制备了聚合物太阳能电池。掺杂不同浓度的GQDs后,聚合物电池的开路电压和填充因子都比未掺杂器件高。GQDs掺杂质量分数为0.15%时,形成的掺杂薄膜平整、均匀,填充因子提高了17.42%。GQDs经还原后,随还原时间的延长,填充因子FF增大。到45 min时,电池的FF基本稳定,从31.57%提高至40.80%,提高了29.24%。退火后,获得了最佳的掺杂GQDs的聚合物太阳能电池,开路电压Voc为0.54 V,填充因子FF为55.56%,光电转换效率为0.75%。  相似文献   

19.
主要研究了采用溅射后硒化方法制备CIGS(铜铟镓硒)薄膜太阳电池的吸收体材料中的表面层掺杂调节问题。并利用Raman散射谱分析研究了样品表面层特征峰的移用,研究结果表明: CIGS薄膜表面层由富In表面层调节为富CuGa表面层后,Raman特征峰位向高波数移动,表明薄膜表面的Ga含量随之变化,并导致表面能带的相应改变,经计算证实了富CuGa表面层样品较之富In表面层样品具有更高的表面能带,从而改善了以此材料为吸收层的太阳电池器件性能, Voc提高了74 mV,填充因子上升8%,最终使器件转换效率η相应提高了约2%。提高了Voc与FF。同时表明Raman散射谱作为一种灵敏的表面表征手段,在研究太阳电池吸收层表面状态时十分有力。  相似文献   

20.
A new type of multiple quantum well (MQW) reflection modulator, based on the multilayer active antireflection coating (A-ARC) is proposed and compared theoretically with the conventional MQW modulator based on the asymmetric Fabry-Perot etalon (AFP). It is shown that both a large on-off ratio and a low operating voltage can be achieved. It will be demonstrated that the A-ARC device matches the performance of the recently reported asymmetric Fabry-Perot modulator while requiring smaller device thickness. It will also be shown that A-ARC MQW modulators exhibit superior tolerance to the unavoidable thickness variations, thus allowing fabrication of large-area uniform arrays of modulators.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号