首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report a 2D simulation of electrical and optical characteristics of green color InGaN/GaN multiple quantum well light-emitting diodes by APSYS software with a dot-in-well model. The In-rich quantum dot-like structure in InGaN/GaN multiple quantum wells has been considered in the LED experimental data analysis. Simulation results based on the quantum dot model are in better agreement with the experimental data than those based on the purely quantum well model, indicating that the quantum dot spontaneous emission and the non-equilibrium quantum transport play important roles in the InGaN/GaN multiple quantum well light-emitting diodes.  相似文献   

2.
利用金属有机物化学气相淀积技术在蓝宝石衬底上生长了InGaN/GaN量子阱结构. 研究了引入n型InGaN薄层或InGaN/GaN超晶格层的量子阱特性,结果表明通过引入n型InGaN薄层或InGaN/GaN超晶格层缓解了量子阱有源区中的应力,改善了多量子阱表面形貌,减少了V型缺陷密度,而且提高了多量子阱的光致发光强度,从而也改进了LED的发光效率. 关键词: InGaN/GaN多量子阱 原子力显微镜 X射线双晶衍射 光致发光  相似文献   

3.
In this paper,InGaN/GaN multiple quantum well solar cells (MQWSCs) with an In content of 0.15 are fabricated and studied.The short-circuit density,fill factor and open-circuit voltage (V oc) of the device are 0.7 mA/cm 2,0.40 and 2.22 V,respectively.The results exhibit a significant enhancement of V oc compared with those of InGaN-based hetero and homojunction cells.This enhancement indicates that the InGaN/GaN MQWSC offers an effective way for increasing V oc of an In-rich In x Ga 1 x N solar cell.The device exhibits an external quantum efficiency (EQE) of 36% (7%) at 388 nm (430 nm).The photovoltaic performance of the device can be improved by optimizing the structure of the InGaN/GaN multiple quantum well.  相似文献   

4.
InGaN based light-emitting diodes (LEDs) with dip-shaped quantum wells and conventional rectangular quantum wells are numerically investigated by using the APSYS simulation software. It is found that the structure with dip-shaped quantum wells shows improved light output power, lower current leakage and less efficiency droop. Based on numerical simulation and analysis, these improvements on the electrical and the optical characteristics are attributed mainly to the alleviation of the electrostatic field in dip-shaped InGaN/GaN multiple quantum wells (MQWs).  相似文献   

5.
Uniform InGaN nanodots were successfully grown on SiO2 pretreated GaN surface. It was found that the InGaN nanodots were 20?nm in diameter and 5?nm in height, approximately. After the growth of two periods of InGaN/GaN quantum wells on the surface of InGaN nanodots, nanodot structure still formed in the InGaN well layer caused by the enhanced phase separation phenomenon. Dual-color emissions with different behavior were observed from photoluminescence (PL) spectrum of InGaN nanodots hybrid with InGaN/GaN quantum wells. A significant blueshift and a linewidth broadening were measured for the low-energy peak as the increase of PL excitation power, while a slight blueshift and a linewidth narrowing occurred for the high-energy peak. Accordingly, these two peaks were assigned to be from the In-rich nanodots and quantized state transition from the InGaN/GaN quantum wells with indium content, respectively.  相似文献   

6.
A new mechanism of light-to-electricity conversion that uses InGaN/GaN QWs with a p-n junction is reported.According to the well established light-to-electricity conversion theory,quantum wells(QWs) cannot be used in solar cells and photodetectors because the photogenerated carriers in QWs usually relax to ground energy levels,owing to quantum confinement,and cannot form a photocurrent.We observe directly that more than 95% of the photoexcited carriers escape from InGaN/GaN QWs to generate a photocurrent,indicating that the thermionic emission and tunneling processes proposed previously cannot explain carriers escaping from QWs.We show that photoexcited carriers can escape directly from the QWs when the device is under working conditions.Our finding challenges the current theory and demonstrates a new prospect for developing highly efficient solar cells and photodetectors.  相似文献   

7.
熊飞 《物理实验》2004,24(5):46-48
采用光致发光谱、光致发光激发谱以及拉曼光谱对GaN基量子阱材料进行了实验观察和分析 .实验结果表明样品中量子点结构不均匀及InGaN层中In成分分布不均匀 ,且其光致发光谱的波峰是由自由激子辐射复合发光引起的 .同时由室温下InGaN/GaN量子阱的拉曼谱可得知InGaN/GaN多量子阱的结构特征  相似文献   

8.
Blue InGaN/GaN multiple quantum well (MQW) light-emitting diodes (LEDs) are simulated by the APSYS software with a non-local quantum well transport model which is used to describe the phenomenon that carriers can fly over the quantum wells directly. The simulation results based on this model are in good agreement with the experiment and show its significant influence on the output power, carrier transport, peak wavelength and current crowding effect of the InGaN/GaN MQW LEDs, indicating that the non-local quantum well transport plays an important role in these devices.  相似文献   

9.
InGaN based light-emitting diodes (LEDs) with different electron blocking layers have been numerically investigated using the APSYS simulation software. It is found that the structure with a p-AlInN electron blocking layer showes improved light output power, lower current leakage, and smaller efficiency droop. Based on numerical simulation and analysis, these improvements of the electrical and optical characteristics are mainly attributed to the efficient electron blocking in the InGaN/GaN multiple quantum wells (MQWs).  相似文献   

10.
A new approach to fabricating high-quality AlInGaN film as a lattice-matched barrier layer in multiple quantum wells(MQWs) is presented. The high-quality AlInGaN film is realized by growing the AlGaN/InGaN short period superlattices through metalorganic chemical vapor deposition, and then being used as a barrier in the MQWs. The crystalline quality of the MQWs with the lattice-matched AlInGaN barrier and that of the conventional InGaN/GaN MQWs are characterized by x-ray diffraction and scanning electron microscopy. The photoluminescence(PL) properties of the InGaN/AlInGa N MQWs are investigated by varying the excitation power density and temperature through comparing with those of the InGaN/GaN MQWs. The integral PL intensity of InGaN/AlInGaN MQWs is over 3 times higher than that of InGaN/GaN MQWs at room temperature under the highest excitation power. Temperature-dependent PL further demonstrates that the internal quantum efficiency of InGaN/AlInGaN MQWs(76.1%) is much higher than that of InGaN/GaN MQWs(21%).The improved luminescence performance of InGaN/AlInGaN MQWs can be attributed to the distinct reduction of the barrier-well lattice mismatch and the strain-induced non-radiative recombination centers.  相似文献   

11.
The electroluminescence (EL) and photoluminescence (PL) spectra of InGaN/GaN multiple quantum wells (MQWs) with a prestrained InGaN interlayer in a laser diode structure are investigated. When the injection current increases from 5 mA to 50 mA, the blueshift of the EL emission peak is 1 meV for the prestrained sample and 23 meV for a control sample with the conventional structure. Also, the internal quantum efficiency and the EL intensity at the injection current of 20 mA are increased by 71% and 65% respectively by inserting the prestrained InGaN interlayer. The reduced blueshift and the enhanced emission are attributed mainly to the reduced quantum-confined Stark effect (QCSE) in the prestrained sample. Such attributions are supported by the theoretical simulation results, which reveal the smaller piezoelectric field and the enhanced overlap of electron and hole wave functions in the prestrained sample. Therefore, the prestrained InGaN interlayer contributes to strain relaxation in the MQW layer and enhancement of light emission due to the reduction of QCSE.  相似文献   

12.
邢艳辉  韩军  刘建平  邓军  牛南辉  沈光地 《物理学报》2007,56(12):7295-7299
利用金属有机物化学气相淀积技术在蓝宝石衬底上生长InGaN/GaN多量子阱结构.对多量子阱垒层掺In和非掺In进行了比较研究,结果表明,垒掺In 的样品界面质量变差,但明显增加了光致发光谱的峰值强度和积分强度,带边峰与黄光峰强度之比增大,降低了表面粗糙度.利用这两种结构制备了相应的发光二极管(LED)样品.通过电荧光测量可知,垒掺In的LED比非掺In的LED有较高的发光强度和相对均匀的波长,这主要是由于垒掺In后降低了阱与垒之间晶格失配的应力,从而降低了极化电场,提高了辐射复合效率. 关键词: InGaN/GaN多量子阱 X射线双晶衍射 原子力显微镜 光致发光  相似文献   

13.
对InGaN量子阱LED的内量子效率进行了优化研究。分别对发光光谱、量子阱中的载流子浓度、能带分布、静电场和内量子效应进行了理论分析。对具有不同量子阱数量的InGaN/GaN LED进行了理论数值比对研究。研究结果表明,对于传统结构的LED而言,2个量子阱的结构相对于5个和7个量子阱具有更好的光学性能。同时还研究了具有三角形量子阱结构的LED,研究结果显示,三角形多量子阱结构具有较高的电致发光强度、更高的内量子效率和更好的发光效率,所有的优点都归因于较高的电子-空穴波函数重叠率和低的Stark效应所产生的较高的载流子输入效率和复合发光效率。  相似文献   

14.
陈钊  杨薇  刘磊  万成昊  李磊  贺永发  刘宁炀  王磊  李丁  陈伟华  胡晓东 《中国物理 B》2012,21(10):108505-108505
The InGaN/GaN blue light emitting diode(LED) is numerically investigated using a triangular-shaped quantum well model,which involves analysis on its energy band,carrier concentration,overlap of electron and hole wave functions,radiative recombination rate,and internal quantum efficiency.The simulation results reveal that the InGaN/GaN blue light emitting diode with triangular quantum wells exhibits a higher radiative recombination rate than the conventional light emitting diode with rectangular quantum wells due to the enhanced overlap of electron and hole wave functions(above 90%) under the polarization field.Consequently,the efficiency droop is only 18% in the light emitting diode with triangular-shaped quantum wells,which is three times lower than that in a conventional LED.  相似文献   

15.
Within the framework of the effective-mass and envelope function theory, exciton states and optical properties in wurtzite (WZ) InGaN/GaN quantum wells (QWs) are investigated theoretically considering the built-in electric field effects. Numerical results show that the built-in electric field, well width and in composition have obvious influences on exciton states and optical properties in WZ InGaN/GaN QWs. The built-in electric field caused by polarizations leads to a remarkable reduction of the ground-state exciton binding energy, the interband transition energy and the integrated absorption probability in WZ InGaN/GaN QWs with any well width and In composition. In particular, the integrated absorption probability is zero in WZ InGaN/GaN QWs with any In composition and well width L > 4 nm. In addition, the competition effects between quantum confinement and the built-in electric field (between quantum size and the built-in electric field) on exciton states and optical properties have also been investigated.  相似文献   

16.
李为军  张波  徐文兰  陆卫 《物理学报》2009,58(5):3421-3426
分别采用量子阱模型和量子点模型对蓝色InGaN/GaN多量子阱发光二极管电学和光学特性进行模拟,并和实验测量结果进行了比对,结果发现,量子点模型的引入,很好地解决了I-V和电致发光二方面的实验与理论模型间符合程度不好的问题.同时,在I-V曲线特性模拟中发现,在量子点理论模型的基础上,只有考虑到载流子的非平衡量子传输效应,才能得到和实验相接近的I-V曲线,揭示着在InGaN/GaN 多量子阱发光二极管电输运特性中,载流子的非 关键词: InGaN/GaN 发光二极管 数值模拟 量子点模型  相似文献   

17.
Wen-Jie Wang 《中国物理 B》2022,31(7):74206-074206
The effects of GaN/InGaN asymmetric lower waveguide (LWG) layers on photoelectrical properties of InGaN multiple quantum well laser diodes (LDs) with an emission wavelength of around 416 nm are theoretically investigated by tuning the thickness and the indium content of InGaN insertion layer (InGaN-IL) between the GaN lower waveguide layer and the quantum wells, which is achieved with the Crosslight Device Simulation Software (PIC3D, Crosslight Software Inc.). The optimal thickness and the indium content of the InGaN-IL in lower waveguide layers are found to be 300 nm and 4%, respectively. The thickness of InGaN-IL predominantly affects the output power and the optical field distribution in comparison with the indium content, and the highest output power is achieved to be 1.25 times that of the reference structure (symmetric GaN waveguide), which is attributed to the reduced optical absorption loss as well as the concentrated optical field nearby quantum wells. Furthermore, when the thickness and indium content of InGaN-IL both reach a higher level, the performance of asymmetric quantum wells LDs will be weakened rapidly due to the obvious decrease of optical confinement factor (OCF) related to the concentrated optical field in the lower waveguide.  相似文献   

18.
The effect of quantum well number on the quantum efficiency and temperature characteristics of In- GaN/GaN laser diodes (LDs) is determined and investigated. The 3-nm-thick In0.13Ca0.87N wells and two 6-am-thick GaN barriers are selected as an active region for Fabry-Perot (FP) cavity waveguide edge emitting LD. The internal quantum efficiency and internal optical loss coefficient are extracted through the simulation software for single, double, and triple InGaN/GaN quantum wells. The effects of device temperature on the laser threshold current, external differential quantum efficiency (DQE), and output wavelength are also investigated. The external quantum efficiency and characteristic temperature are improved significantly when the quantum well number is two. It is indicated that the laser structures with many quantum wells will suffer from the inhomogeneity of the carrier density within the quantum well itself which affects the LD performance.  相似文献   

19.
The effects of growth parameters such as barrier growth time, growth pressure and indium flow rate on the properties of InGaN/GaN multiple quantum wells (MQWs) were investigated by using photoluminescence (PL), high resolution X-ray diffraction (HRXRD), and atomic force microscope (AFM). The InGaN/GaN MQW structures were grown on c-plane sapphire substrate by using metalorganic chemical vapor deposition. With increasing barrier growth time, the PL peak energy is blue-shifted by 18 nm. For InGaN/GaN MQW structures grown at different growth pressures, the PL intensity is maximized in the 300 Torr – grown structure, which could be attributed to the improved structural quality confirmed by HRXRD and AFM results. Also, the optical properties of InGaN/GaN MQW are strongly affected by the indium flow rate.  相似文献   

20.
In this study, the influence of multiple interruptions with trimethylindium(TMIn)-treatment in InGaN/GaN multiple quantum wells(MQWs) on green light-emitting diode(LED) is investigated. A comparison of conventional LEDs with the one fabricated with our method shows that the latter has better optical properties. Photoluminescence(PL) full-width at half maximum(FWHM) is reduced, light output power is much higher and the blue shift of electroluminescence(EL) dominant wavelength becomes smaller with current increasing. These improvements should be attributed to the reduced interface roughness of MQW and more uniformity of indium distribution in MQWs by the interruptions with TMIn-treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号