首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
本文使用交叉分子束方法研究了氟原子和振动激发态氘分子D2(v=1, j=0)的反应. 使用受激拉曼抽运的方法制备了振动激发的D2分子. 实验中未观测到来自于旋轨耦合激发态氟原子F*(2P1/2)与振动激发态D2分子的贡献. 观测到来自于旋轨耦合基态氟原子F(2P3/2)和振动激发态D2的反应信号,相应的产物DF分子布居于v''=2,3,4,5振动态上. 与振动基态反应F+D2(v=1,j=0)相比,振动激发态反应F+D2(v=1,j=0)生成的DF产物转动分布更“热”. 获得了振动激发反应的四个碰撞能在0.32至2.62 kcal/mol范围内的微分反应截面. 在最低的碰撞能0.32 kcal/mol下,所有振动态的DF产物都以后向散射为主. 随着碰撞能的增加,DF产物的角分布逐渐从后向转移到侧向. 测量了DF(v''=5)产物的前向微分散射截面随碰撞能变化的曲线. 前向散射的DF(v''=5)信号出现于1.0 kcal/mol. 在2.62 kcal/mol碰撞能下DF(v''=5)主要为前向散射.  相似文献   

2.
本文搭建了一套新的实验设备,首次将氢原子里德堡态标记的飞行时间谱技术与激光爆破束源技术相结合,进行超高碰撞能下化学反应的动力学研究.初步进行了F+D_2→DF+D在超高碰撞能23.84 kJ/mol下的实验研究.在研究中应用了两种类型束源:一类是通过激光爆破过程产生的高能F原子束源,另一类是通过液氮冷却脉冲阀而产生的D2束源.实验中探测了反应产物振动态分辨的微分散射截面.结果显示,大部分反应产物DF主要呈现侧向和后向散射分布,而产物DF(v'=4)则主要分布在前向.对前向散射产物DF(v'=4)的动力学来源进行了讨论.  相似文献   

3.
运用高分辨的H原子里德堡标记飞行时间谱方法, 研究了F+HD→DF+H反应在碰撞能为8.19~18.98 kJ/mol的动力学过程. 获取了产物振转态分辨的微分截面. 在低碰撞能,DF产物主要为后向散射;随着碰撞能的增加侧向散射产物增强. 除了后向和侧向散射产物,还首次观察到了该反应中的DF(v′=4)前向散射产物. 随着碰撞能的增加,DF(v′=4)前向散射产物逐渐增强. 分析了总能量在产物振动、转动和平动中的分配随碰撞能以及散射角的变化;获得了DF产物的振动分支比随碰撞能的变化关系. 同时也对DF(v  相似文献   

4.
利用高分辨的交叉分子束装置研究了F+H2(v=0,j=0, 1)反应在碰撞能1.27 kcal/mol下的动力学行为, 获得了产物HF(v′=1,2,3)转动态分辨的微分散射截面.当反应物H2 处于不同转动量子态j=0和1时,产物HF(v′=2)的散射角分布都主要表现为后向散射,但HF(v′=2)的转动态布居与反应物的转动量子态密切相关,转动激发的H2分子将产生转动“更热”的HF(v′=2) 产物.另外,对于HF(v′=3)产物通道,由于slow-down机理的影响,当H2布居于j=0时前向散射表现更显著.  相似文献   

5.
本文利用高分辨的里德堡态氘原子标识-交叉分子束装置,研究了碰撞能为4.5~6.5 kcal/mol范围内Cl(~2P)[Cl(2~P_(3/2))和Cl~*(~2P_(1/2))]与D_2的反应.虽然自旋轨道激发态反应Cl~*(~2P_(1/2))+D_2在波恩-奥本海默(B-O)近似下本应是禁阻的,但实验中观测到了该反应的贡献.通过测量靠近后向的碰撞能相关的微分散射截面连线,发现低碰撞能下的产物主要来自于B-O近似禁阻的反应Cl~*+D_2.随着碰撞能的提高,自旋轨道基态反应Cl+D_2的反应性增加明显要比自旋轨道激发态反应Cl~*+D_2更快,并且在高碰撞能下成为产物的主要来源.实验结果表明:在低碰撞能下,Cl~*中自旋轨道激发态的额外能量,可以帮助B-O近似禁阻的反应Cl~*+D_2越过势垒;然而当碰撞能接近和高于反应势垒时,B-O近似允许的反应Cl+D_2占主导地位.Cl/Cl~*+D_2反应中B-O近似有效性的特征与共同位素反应Cl/Cl~*+H_2是一致的.  相似文献   

6.
报道了H原子和振动激发的HF(v=3,j=0)分子在低碰撞能下的量子反应动力学研究.计算结果表明:在低碰撞能下,散射主要以非反应过程为主;振动激发有利于反应的进行;在小于10-4eV碰撞能下,非反应非弹性散射截面和反应截面的比值约为3.在反应截面上发现了Feshbach共振现象,证实是由反应通道上紧邻反应势垒的H…HF(v=3,j=1~3)的范德瓦尔斯聚合体存在的准束缚态所形成.  相似文献   

7.
采用高分辨的氢原子里德堡态标识的飞行时间谱技术,对F+HD→DF+H反应进行了交叉分子束研究. 在2.51~5.60 kJ/mol的8个碰撞能下,测得了部分转动态分辨的微分截面. 实验结果显示,反应产物角分布表现出显著的后向散射,随着碰撞能的提高,角分布会逐渐变宽. 确定了产物振动态分支比随碰撞能变化的关系. 结果显示产物DF表现出高度振动态反转布居,其中DF(v′=3)态是布居数最高的产物态,在3.97 kJ/mol以上还探测到产物DF(v′=1)的信号.  相似文献   

8.
利用高灵敏度的氢原子里德堡飞渡时间谱方法研究了 F H_2→HF H 反应碰撞能在5.02kJ/mol 下的交叉分子束反应态态散射动力学.所有在时间飞渡谱中被观测到的谱峰可以归属为 HF 产物的振转态结构.还观测到了明显的 HF(v’=3)前向散射,以及少许的 HF(v’=2)前向散射.  相似文献   

9.
O(3P)+HCl(v,j)→OH(v'',j'')+Cl反应的准经典轨迹研究   总被引:1,自引:0,他引:1  
基于MP2/6-31G(d,p)水平导出O (3P)+HCl体系的分析势能函数,用准经典的Monte Carlo轨迹方法对O(3P)+HCl(v,j)→OH(v',j')+Cl的分子反应动力学过程进行了研究.结果表明:对HCl(v=0,j= 0,1,2)的碰撞能量以49.37 kJ/mol为分界点,在49.37 kJ/mol以前,反应在j=0,1,2间的截面分布差别不大;而在此碰撞能量之后三者明显不同.j=0这条曲线在碰撞能量大于44.35 kJ/mol后的截面突然增加,几乎呈线性加大;当转动量子数j'在11之前截面分布出现了振荡行为.对HCl分别计算了v=2,j=1,6,9时在各转动量子数上的布居情况,并与Zhang等的实验观察值相比较,发现与之定性一致.  相似文献   

10.
本文利用交叉分子束方法和离子速度成像技术,对H+HD→H_2+D反应在1.17 eV碰撞能下的态-态反应动力学开展了高分辨实验研究.实验采用1+1'(真空紫外+紫外)近阈值激光电离方式对反应中的D原子产物进行探测,获得了高角度分辨和高能量分辨的产物离子速度影像,进而精确获得了反应的态-态微分截面.实验观测到了H2(v'=0,j'=1)和H_2(v'=0,j'=3)振转产物角分布中与散射过程的干涉效应相联系的前向散射振荡.这一研究进一步表明了化学反应微分截面的精确测量在气相态-态反应动力学研究中的重要性.  相似文献   

11.
利用泵浦-检测方法,在样品池条件下,研究了Cs(6D5/2)与H2反应碰撞传能过程.利用激光感应荧光(LIF)光谱技术,确定了CsH[X1∑+(v,J)]振转能级上的布居分布,转动态分布与热统计分布基本一致.Cs激发态原子密度由激光能量吸收得到.记录A1∑+(v',J+1)→X1∑+(v,J)的时间分辨荧光,从荧光强度的对数值给出的直线斜率确定(v',J+1)→(v,J)的自然辐射率,结合(v,J)→(v',J+1)吸收系数的测量,得到反应生成物CsH[x1∑+(v,J)]态的分子密度.由速率方程分析,给出反应截面σ(v,J),对J求和,得到σ(v)[10-16 cm2单位]分别为(0.64士0.19)(v=0)和(0.58士0.17)(v=1).  相似文献   

12.
运用高分辨的H/D原子里德堡标记飞行时间谱方法,研究了F+HD→HF+D反应在5.43~18.73 kJ/mol十个碰撞能下的动力学过程. 获取了产物振转态分辨的微分截面. HF(v′=2)前向产物的强度随着碰撞能的增大而降低,表明随着碰撞能的增大共振贡献减弱. 当碰撞能高于HF(v′=3)产物的阈值能量时,观察到了该产物的前向散射峰. 分析了总能量在产物振动、转动和平动中的分配以及HF产物的振动分支比随碰撞能的变化关系.  相似文献   

13.
张树东  李海洋 《物理学报》2003,52(5):1297-1301
脉冲激光烧蚀金属平面铝靶产生的热原子与气相CF4碰撞反应中,在400—600nm之间观测到激发态C2分子的发光光谱,它们可归属为Swan带的d3Πg-a3Πu跃迁中Δv=2,1,0,-1,-2五个振动序列(v'≤6).光谱强度分析表明,C2激发态的振动温度达6340K左右.与激光烧蚀Al+O2反应生成AlO的实验结果以及激光烧蚀Cu+CF4的光谱比较,对比Al(2P1/2-2S1/2,3944nm)和C2的d—a跃迁(0—0)带带头(5165nm)的飞行时间轮廓,认为激发态的Al(2S1/2)原子通过 关键词: 激光烧蚀 发光光谱 C2分子  相似文献   

14.
本文搭建了一套新的实验设备,首次将氢原子里德堡态标记的飞行时间谱技术与激光爆破束源技术相结合,进行超高碰撞能下化学反应的动力学研究. 初步进行了F+D2→DF+D在超高碰撞能23.84 kJ/mol下的实验研究. 在研究中应用了两种类型束源:一类是通过激光爆破过程产生的高能F原子束源,另一类是通过液氮冷却脉冲阀而产生的D2束源. 实验中探测了反应产物振动态分辨的微分散射截面. 结果显示,大部分反应产物DF主要呈现侧向和后向散射分布,而产物DF(v''=4)则主要分布在前向. 对前向散射产物DF(v''=4)的动力学来源进行了讨论.  相似文献   

15.
本文利用时间切片离子速度成像技术、交叉分子束和激光溅射技术研究了高碰撞能下(36 kcal/mol)钇原子与二氧化硫分子的反应动力学.利用多光子电离在482~615 nm的波长范围内得到了产物YO的时间切片离子速度成像.YO的切片图像显示其较宽的速度分布和前-后向散射为主的角分布,其中前向散射信号明显强于后向散射.这种空间分布暗示了该反应通过一个中间体进行,且中间体的寿命不超过一个转动周期.中间体的形成意味着该氧化反应电子转移机理的发生.  相似文献   

16.
本文利用时间切片离子速度成像技术、交叉分子束和激光溅射技术研究了高碰撞能下(36 kcal/mol)钇原子与二氧化硫分子的反应动力学. 利用多光子电离在482∽615 nm的波长范围内得到了产物YO的时间切片离子速度成像. YO的切片图像显示其较宽的速度分布和前-后向散射为主的角分布,其中前向散射信号明显强于后向散射. 这种空间分布暗示了该反应通过一个中间体进行,且中间体的寿命不超过一个转动周期. 中间体的形成意味着该氧化反应电子转移机理的发生.  相似文献   

17.
利用泵浦-检测方法,在样品池条件下,研究了Cs(6D5/2)与H2反应碰撞传能过程。利用激光感应荧光(LIF)光谱技术,确定了CsH[X1Σ+(v,J)]振转能级上的布居分布,转动态分布与热统计分布基本一致.Cs激发态原子密度由激光能量吸收得到.记录A1Σ+(v',J+1)→X1Σ+(v,J)的时间分辨荧光,从荧光强度的对数值给出的直线斜率确定(v',J+1)→(v,J)的自然辐射率,结合(v,J)→(v',J+1)吸收系数的测量,得到反应生成物CsH[X1Σ+(v,J)]态的分子密度.由速率方程分析,给出反应截面(v,J),对J求和,得到(v)[10-16cm2单位]分别为(0.64±0.19)(v=0)和(0.58±0.17)(v=1).  相似文献   

18.
徐捷 《光学学报》1990,10(3):281-285
在用双光子激发产生的Xe(5p~56p)原子与N_2分子碰撞过程中,有效地生成了N_2(B~3П_g,v=9~14)振动激发态.观察到相应的Δv=4的N_2(B~3П_g-A~3∑_u~+)辐射跃迁萤光,测量了Xe(6p)原子在N_2中的淬灭速率常数,对碰撞弛豫过程进行了讨论.  相似文献   

19.
H原子与卤素气体(F2,Cl2,Br2)的反应是典型的轻-重-重原子-双原子反应. 对于研究化学激光的基本反应途径十分重要. 之前所有的实验结果都表明,H+Br2→HBr+Br反应的势垒高度很小,甚至是负值. 本文基于11698个UCCSD(T)/CBS水平的从头算能量点,用FI-NN方法构建了HBr2体系的精确全维全域势能面,还包括了Br原子2P3/2轨道的自旋-轨道耦合. 势能面有一个下沉的势垒(-0.351 kcal/mol}),放热(ΔH0=-41.265 kcal/mol) 和实验值吻合的很好,在这个势能面上应用含时波包方法计算了H+Br2→HBr+Br反应的态-态积分和微分截面. 对初始基态反应,产物HBr(v′=2,3,4)态在所考虑的整个能量范围内占主导地位,说明HBr是振动态布居反转的. 温度300 K时,计算的产物振动分布在$v$$''$=3有最大值,在v′=0,1的分布可以忽略不计,这与Setser及合作者和Polanyi及合作者的实验结果相一致. 超过一半的总可用能量进入到产物的内部运动中,这其中大部分进入到振动中. 计算表明,反应物Br2的初始转动激发对产物振转态分布和微分截面影响很小,而初始振动激发则有一定影响. 在低能区域,初始振动激发到v0=5态很明显的增强了产物的振动激发. 在初始基态和初始转动激发态下,碰撞能量到0.5 eV的微分截面在后向达到峰值,但随着碰撞能量的增加,角分布的宽度显著增加. 对于初始振动激发态,产物微分截面的结构较为复杂,对高振动激发态产物有很强的前向散射峰.  相似文献   

20.
本文运用密度泛函B3LYP/6-311+G(3df,2p)方法研究了联氨分子的电子结构和能量,并系统分析了联氨分子的分解反应,计算绘制了单分子联氨在基态和单态第一激发态下沿N-N分解反应的势能曲线。本文计算发现联氨分子在这两种电子态下的离解能分别是:基态58.8 kcal/mol,单态第一激发态495.5 kcal/mol。基态分子分解反应是吸热反应,而单态第一激发态分解反应是放热反应。计算发现单态第一激发态的激发能是554.2 kcal/mol。结合这两种电子态下联氨分子的红外振动频率分析,本文认为,在非强制断键的情况下,联氨分子沿N-N键均裂而生成两个NH2自由基的可能性很小。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号