首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  免费   0篇
  国内免费   6篇
化学   2篇
物理学   4篇
  2019年   4篇
  2011年   1篇
  2010年   1篇
排序方式: 共有6条查询结果,搜索用时 15 毫秒
1
1.
本文搭建了一套新的实验设备,首次将氢原子里德堡态标记的飞行时间谱技术与激光爆破束源技术相结合,进行超高碰撞能下化学反应的动力学研究. 初步进行了F+D2→DF+D在超高碰撞能23.84 kJ/mol下的实验研究. 在研究中应用了两种类型束源:一类是通过激光爆破过程产生的高能F原子束源,另一类是通过液氮冷却脉冲阀而产生的D2束源. 实验中探测了反应产物振动态分辨的微分散射截面. 结果显示,大部分反应产物DF主要呈现侧向和后向散射分布,而产物DF(v''=4)则主要分布在前向. 对前向散射产物DF(v''=4)的动力学来源进行了讨论.  相似文献   
2.
本文利用D原子里德堡态时间飞行谱研究了DNCO分子在波长200∽235 nm范围的光解动力学. 实验测量了产物的平动能分布和空间角分布. 在210∽235 nm光解离下,观测到接近统计分布和各向同性的产物,该产物有可能来自从S1势能面内转换到S0势能面,然后在S0势能面上解离. 在更短的解离波长下,除了统计分布的产物,另外一种分布的产物出现在高平动能的地方,具有很高的各向异性,该产物来自从S1势能面上的直接解离. 相比较HNCO的解离结果,DNCO直接解离通道出现在更高的激发能量. 通过对NCO产物内能态的归属,发现NCO产物主要是弯曲振动激发和适当的伸缩振动激}.  相似文献   
3.
基于簇模型采用密度泛函理论在B3LYP/6-311+G**/LANL2DZ(metal)基组水平上计算了吡啶及α-吡啶基吸附于Pt、Pd、Rh、Ni四种金属表面的红外和拉曼光谱. 通过详细地分析和比较计算结果与文献报道的实验谱图, 提出了以N端吸附的吡啶分子和α-吡啶基这两种表面物种各自存在的谱学判据. 计算结果表明在以上四种金属表面, α-吡啶基的拉曼活性比吡啶的小, 而特征谱峰的红外强度与吡啶相当. 该结果表明红外光谱是检测金属表面α-吡啶基的有效手段, 也解释了采用表面增强拉曼光谱和红外光谱研究吡啶吸附在金属表面得出不同结构的原因.  相似文献   
4.
水滑石型固体碱碱性位的内标CO2-TPD-MS表征   总被引:1,自引:1,他引:0  
通过共沉淀法制备了一系列不同镁铝比的水滑石样品,依据物相分析与热失重实验结果确认了合成的样品具有水滑石结构。以方解石型CaCO3为内标,对水滑石样品碱性位的CO2-TPD定量表征进行校正,并比较了不同实验参数对方法精密度的影响。经过各测试参数的敏感性分析证实,用CaCO3脱附峰面积校正后,水滑石碱密度测量结果的RSD分别由9.7%、12.3%下降为4.3%、7.3%,而汇总分析的RSD可从29.6%下降至6.6%。CO2-TPD定量分析精密度明显提高,证实了内标法的优势及其应用于固体碱定量表征的可行性。将内标法所得结果与固体碱催化酯交换反应的性能关联,结果发现,水滑石催化性能受到活性相的碱强度与碱密度双重指标的调控,碱强度和碱密度越大,酯交换催化效率越高。  相似文献   
5.
本文搭建了一套新的实验设备,首次将氢原子里德堡态标记的飞行时间谱技术与激光爆破束源技术相结合,进行超高碰撞能下化学反应的动力学研究.初步进行了F+D_2→DF+D在超高碰撞能23.84 kJ/mol下的实验研究.在研究中应用了两种类型束源:一类是通过激光爆破过程产生的高能F原子束源,另一类是通过液氮冷却脉冲阀而产生的D2束源.实验中探测了反应产物振动态分辨的微分散射截面.结果显示,大部分反应产物DF主要呈现侧向和后向散射分布,而产物DF(v'=4)则主要分布在前向.对前向散射产物DF(v'=4)的动力学来源进行了讨论.  相似文献   
6.
本文利用D原子里德堡态时间飞行谱研究了DNCO分子在波长200~235 nm范围的光解动力学.实验测量了产物的平动能分布和空间角分布.在210~235 nm光解离下,观测到接近统计分布和各向同性的产物,该产物有可能来自从S_1势能面内转换到S_0势能面,然后在S_0势能面上解离.在更短的解离波长下,除了统计分布的产物,另外一种分布的产物出现在高平动能的地方,具有很高的各向异性,该产物来自从S_1势能面上的直接解离.相比较HNCO的解离结果,DNCO直接解离通道出现在更高的激发能量.通过对NCO产物内能态的归属,发现NCO产物主要是弯曲振动激发和适当的伸缩振动激发.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号