首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Super-aligned carbon nanotube (SACNT) arrays are grown on the surface of micro perforated panel (MPP) in the hope of improving the acoustic performance of MPP absorbers by virtue of their unique properties. Scanning electron microscopy reveals that SACNT arrays did not block the perforations of MPPs or changed the perforation diameter due to their “super-aligned” nature, although MPPs are thickened. The absorption effect of SACNT arrays which are of the same and different lengths with different incident side on MPP absorbers are investigated, and standing wave tube method is used to determine the normal sound absorption coefficient. Results show that both of the lengths of SACNT arrays and the incident side have effects on the sound absorption performance of MPP absorbers. And generally SACNT arrays help to improve the sound absorption capacity of MPP absorbers in low-frequency regions only when the SACNT arrays surface is the incident side. SACNT arrays decrease absorption performance of MPP absorbers when the MPP surface is used as the incident side. Moreover, SACNT arrays are found to increase the acoustic ability of MPP absorbers with the same structure parameters monotonically at lengths up to 600 μm in the condition that the SACNT arrays surface is used as the incident side.  相似文献   

2.
采用非平衡分子动力学方法(NEMD)研究了室温(300 K)下厚度为2~32 nm的单晶硅薄膜的沿膜平面方向的热导率,并使用Debye-Einstein模型对模拟温度进行了量子修正。模拟表明薄膜面向热导率小于相应的大体积值,并随膜厚度减小而减小,具有显著的尺寸效应。在模拟范围内膜面向热导率略大于其法向热导率;与声子气动力论的定性结果一致。晶体的表面弛豫和表面重构现象导致了MD模拟中体系总内能的升高。  相似文献   

3.
吕焕玲  王静 《物理学报》2015,64(23):236103-236103
硅纳米材料物理性能的研究对其在半导体技术中的应用是十分重要的. 而掺杂有利于改善硅纳米材料的物理特性, 提高应用价值, 所以本文基于半连续体模型运用Keating形变势, 通过模型计算, 研究了不同位置及不同掺杂浓度的单晶硅纳米薄膜[100]方向的杨氏模量, 分析了掺杂浓度及掺杂位置不同时硅膜杨氏模量与膜厚关系, 结果表明, 与纯硅膜杨氏模量相比, 不同位置的掺杂对硅膜杨氏模量的影响并不明显, 不同浓度的掺杂对硅膜杨氏模量的影响较小. 而随着硅膜厚度的不断增加, 掺杂硅膜杨氏模量与纯硅膜杨氏模量的变化趋势一致, 特别是较小尺寸时的硅膜杨氏模量变化较大. 说明影响硅膜杨氏模量的主要因素是硅膜厚度. 该计算结果对研究硅纳米材料的其他力学特性有一定的参考价值, 也为进一步研究掺杂对纳米硅材料力学性能的影响提供一种全新思路.  相似文献   

4.
铁磁和反铁磁双层膜中铁磁共振的研究   总被引:2,自引:0,他引:2  
采用微磁学理论研究了铁磁/反铁磁双层膜中的铁磁共振现象.本模型将铁磁薄层抽象为一个单晶,具有立方磁晶各向异性和单轴磁晶各向异性,而反铁磁层视为厚度趋近于半无穷,且只有单轴磁晶各向异性.推导出了该系统的铁磁共振频率和频率谱宽度的解析式.数值计算表明,铁磁共振模式分两支,取决于立方磁晶各向异性.而界面的交换耦合,是磁易轴具有单向性的起因.  相似文献   

5.
A new analytical model of high voltage silicon on insulator (SOI) thin film devices is proposed, and a formula of silicon critical electric field is derived as a function of silicon film thickness by solving a 2D Poisson equation from an effective ionization rate, with a threshold energy taken into account for electron multiplying. Unlike a conventional silicon critical electric field that is constant and independent of silicon film thickness, the proposed silicon critical electric field increases sharply with silicon film thickness decreasing especially in the case of thin films, and can come to 141V/μm at a film thickness of 0.1μm which is much larger than the normal value of about 30V/μm. From the proposed formula of silicon critical electric field, the expressions of dielectric layer electric field and vertical breakdown voltage (VB,V) are obtained. Based on the model, an ultra thin film can be used to enhance dielectric layer electric field and so increase vertical breakdown voltage for SOI devices because of its high silicon critical electric field, and with a dielectric layer thickness of 2μm the vertical breakdown voltages reach 852 and 300V for the silicon film thicknesses of 0.1 and 5μm, respectively. In addition, a relation between dielectric layer thickness and silicon film thickness is obtained, indicating a minimum vertical breakdown voltage that should be avoided when an SOI device is designed. 2D simulated results and some experimental results are in good agreement with analytical results.  相似文献   

6.
《Current Applied Physics》2010,10(5):1243-1248
Laser interaction of silicon film located at he top of metallic substrate is examined and energy transport in electron and lattice sub-systems are formulated using the electron kinetic theory approach. The simulations are repeated for different substrate materials, namely gold, silver, and copper. It is found that electron temperature in the silicon film rises in the vicinity of the silicon–metallic substrate interface, despite the fact that energy absorption from the irradiated filed is significantly low in the silicon film. Lattice site temperature rises rapidly in the early heating period at the interface. In addition, lattice site temperature increase is higher in the silicon film than that corresponding to the metallic substrate.  相似文献   

7.
薛源  郜超军  谷锦华  冯亚阳  杨仕娥  卢景霄  黄强  冯志强 《物理学报》2013,62(19):197301-197301
本文采用甚高频等离子体化学气相沉积技术 (VHF-PECVD) 制备薄膜硅/晶体硅异质结电池中的本征硅薄膜钝化层, 光发射谱 (OES) 测量技术研究了硅薄膜沉积过程中等离子体发光谱随时间的变化. 结果表明: 在实验优化条件下等离子体发光谱很快达到稳定 (大约25 s), 并且SiH*/Hα* 的比值随时间变化较小, 避免了生长过程中硅薄膜结构的不均匀性, 这主要是SiH4没有完全耗尽避免了SiH4的反向扩散. 进一步研究了沉积参数对稳态发光谱和硅薄膜性质的影响, 结果表明: 随着硅烷浓度增加, Hα*峰强度减小, SiH*峰强度增加, 薄膜从微晶转变成非晶, 非晶硅薄膜钝化效果好; 随着沉积气压增大, Hα*和 SiH*峰强度先增加后减小, 高气压下Hα*和 SiH*峰强度下降主要是反应前驱物的聚合形成高聚合物, 不利于形成高质量的硅薄膜, 因此钝化效果下降; 随着反应功率密度增加, Hα*和 SiH*峰强度增大, 当功率密度为150 mW/cm2 趋于饱和, 硅薄膜的致密度和钝化效果也开始下降, 50 mW/cm2的低功率密度下硅薄膜钝化效果差可能是由于原子H 浓度低, 不能完全钝化单晶硅表面的悬挂键. 关键词: 薄膜硅 异质结 光发射谱 钝化  相似文献   

8.
A method of controlled diamond doping, consisting in introducing a solid-state silicon source into a CVD reactor chamber is proposed and implemented. Such an approach is tested during diamond film and isolated nanocrystallite growth on silicon, molybdenum, sapphire, copper, and quartz substrates. The approach to nanodiamond doping with silicon during CVD synthesis, developed in this paper, is promising for developing stable highly efficient luminescent nanodiamonds.  相似文献   

9.
The layer transfer process is one of the most promising methods for low-cost and highly-efficient solar cells, in which transferrable mono-crystalline silicon thin wafers or films can be produced directly from gaseous feed-stocks. In this work,we show an approach to preparing seeded substrates for layer-transferrable silicon films. The commercial silicon wafers are used as mother substrates, on which periodically patterned silicon rod arrays are fabricated, and all of the surfaces of the wafers and rods are sheathed by thermal silicon oxide. Thermal evaporated aluminum film is used to fill the gaps between the rods and as the stiff mask, while polymethyl methacrylate(PMMA) and photoresist are used as the soft mask to seal the gap between the filled aluminum and the rods. Under the joint resist of the stiff and soft masks, the oxide on the rod head is selectively removed by wet etching and the seed site is formed on the rod head. The seeded substrate is obtained after the removal of the masks. This joint mask technique will promote the endeavor of the exploration of mechanically stable,unlimitedly reusable substrates for the kerfless technology.  相似文献   

10.
崔建军  高思田 《物理学报》2014,63(6):60601-060601
为了实现纳米薄膜厚度的高精度计量,研制了可供台阶仪、扫描探针显微镜等接触测量的纳米薄膜样片,研究了X射线掠射法测量该纳米薄膜样片厚度的基本原理和计算方法,导出了基于Kiessig厚度干涉条纹计算膜层厚度的线性拟合公式,并提出了一种可溯源至单晶硅原子晶格间距和角度计量标准的纳米膜厚量值溯源方法,同时给出了相应的不确定度评定方法.实验证明:该纳米薄膜厚度H测量相对扩展不确定度达到U=0.3 nm+1.5%H,包含因子k=2.从而建立了一套纳米薄膜厚度计量方法和溯源体系.  相似文献   

11.
A low angle twist boundary formed by bonding an ultrathin (001) silicon film onto a (001) silicon wafer is investigated using two-beam transmission electron microscopy to identify positively zigzag lines which separate large interfacial regions formed by square networks of 1/2? 110 ? screw misfit dislocations. An approach to the elastic field of a zigzag line is proposed from the repetitive use of angular dislocations added to a ribbon-like uniform distribution of infinitesimal dislocations parallel to a family of pure screw misfit dislocations. Theoretical and experimental images of successive triple nodes are compared to derive the unique set of Burgers vectors attached to a zigzag line. In principle, this approach can be applied to any elongated hexagonal mesh of a dislocation network.  相似文献   

12.
Based on the surface passivation of n-type silicon in a silicon drift detector(SDD), we propose a new passivation structure of SiO2/Al2O3/SiO2 passivation stacks. Since the SiO2 formed by the nitric-acid-oxidation-of-silicon(NAOS)method has good compactness and simple process, the first layer film is formed by the NAOS method. The Al2O3 film is also introduced into the passivation stacks owing to exceptional advantages such as good interface characteristic and simple process. In addition, for requirements of thickness and deposition temperature, the third layer of the SiO2 film is deposited by plasma enhanced chemical vapor deposition(PECVD). The deposition of the SiO2 film by PECVD is a low-temperature process and has a high deposition rate, which causes little damage to the device and makes the SiO2 film very suitable for serving as the third passivation layer. The passivation approach of stacks can saturate dangling bonds at the interface between stacks and the silicon substrate, and provide positive charge to optimize the field passivation of the n-type substrate.The passivation method ultimately achieves a good combination of chemical and field passivations. Experimental results show that with the passivation structure of SiO2/Al2O3/SiO2, the final minority carrier lifetime reaches 5223 μs at injection of 5×1015 cm-3. When it is applied to the passivation of SDD, the leakage current is reduced to the order of nA.  相似文献   

13.
This article demonstrates an efficient approach to fabricate nanoparticles arranged in a periodic pattern over a large area. A nanoscale gold film coated on a silicon wafer substrate was sectioned into grids by focused ion beam machining. Through a thermal treatment, the film in a confined area transforms into a nanoparticle due to the surface tension effect of the melted gold film. By controlling the film thickness and the size of the confined area, a nanoparticle array with various particle sizes and interparticle spacings can be manipulated. This approach may have great potential applications in sensor chips and nonlinear devices.  相似文献   

14.
Femtosecond (fs) laser irradiation of a silicon substrate coated with a thin film is a flexible approach to producing metastable alloys with unique properties, including near-unity sub-band gap absorptance extending into the infrared. However, dopant incorporation from a thin film during fs-laser irradiation is not well understood. We study the thin film femtosecond-laser doping process through optical and structural characterization of silicon fs-laser doped using a selenium thin film, and compare the resulting microstructure and dopant distribution to fs-laser doping with sulfur from a gaseous precursor. We show that a thin film dopant precursor significantly changes the laser-material interactions, modifying both the surface structuring and dopant incorporation processes and in turn affecting p–n diode behavior.  相似文献   

15.
Porous silicon (por-Si) can be produced when silicon single crystals are submerged in fluoride solutions and irradiated with laser light. The shape of the por-Si film is determined by the laser beam intensity profile. When laser light is reflected from a Gaussian-shaped film, a divergent beam, which exhibits ring patterns, is observed. The rings are formed by a combination of optical interference and Fresnel diffraction. The size of the pattern is determined by the shape and depth of the film interfaces as well as the index of refraction of the film. The index of the film is determined by the porosity and the index of the fluid that fills the pores. We explore the application of measurements of the reflected beam patterns to the determination of porosity for por-Si thin films. We report the first direct estimation of the porosity of photochemically produced porous silicon. Porosities of 70-95% are found for n-type Si(111) etched in 48% HF with 633-nm illumination. Having demonstrated the success of this technique, we discuss improvements and extensions that can be made.  相似文献   

16.
An approach for studying the influence of nano-particles on the structural properties of deposited thin films is proposed. It is based on the molecular dynamic modeling of the deposition process in the presence of contaminating nano-particles. The nano-particle is assumed to be immobile and its interaction with film atoms is described by a spherically symmetric potential. The approach is applied to the investigation of properties of silicon dioxide films. Visualization tools are used to investigate the porosity associated with nano-particles. The structure of the film near the nano-particle is studied using the radial distribution function. It is found that fluctuations of film density near the nano-particles are essentially different in the cases of low-energy and high-energy deposition processes.  相似文献   

17.
D. Buttard  C. Krieg 《Surface science》2006,600(22):4923-4930
X-ray reflectivity and atomic force microscopy are used to investigate silicon oxide ultra-thin films. Quantitative results are shown using a reflectivity simulation model based on kinematical X-ray theory. Changes in film thickness are discussed in relation to current density, voltage, charge and anodization time. The density and resistivity of silicon oxide are calculated and compared to that of thermal oxide. The electrical field existing in the layer during anodization is estimated. Surface roughness is also measured locally and averaged over the entire surface, producing a low value that meets microelectronic requirements. Thickness is carefully controlled. We show that ultra-thin silicon oxide films are of very high quality. Similar investigations are made on a twisted bonded silicon substrate obtained by the molecular bonding of two silicon wafers. It is shown that the silicon oxide is also of very good quality and can be used as a sacrificial silicon oxide in thinning down the upper silicon film. Controlled, accurate thinning is achieved down to a thickness of 10 nm, the level which is required for etching the dislocation network present at the bonding interface.  相似文献   

18.
刘伯飞  白立沙  魏长春  孙建  侯国付  赵颖  张晓丹 《物理学报》2013,62(20):208801-208801
采用射频等离子体增强化学气相沉积技术, 研究了非晶硅锗薄膜太阳电池. 针对非晶硅锗薄膜材料的本身特性, 通过调控硅锗合金中硅锗的比例, 实现了对硅锗薄膜太阳电池中开路电压和短路电流密度的分别控制. 借助于本征层硅锗材料帯隙梯度的设计, 获得了可有效用于多结叠层电池中的非晶硅锗电池. 关键词: 非晶硅锗薄膜太阳电池 短路电流密度 开路电压 带隙梯度  相似文献   

19.
Energy transport in silicon–aluminum composite thin films due to short-pulse laser irradiation is examined. Frequency dependent phonon transport in the silicon film is considered to formulate equivalent equilibrium temperature while modified two-equation model is used in the aluminum film to obtain electron and phonon temperatures. Thermal boundary resistance across the films is incorporated in the analysis. Transmittance, reflectance, and absorption of the incident laser beam are determined using the transfer matrix method. Equivalent equilibrium temperatures resulted from frequency dependent and frequency independent solutions are compared. It is found that phonon temperature increase at the aluminum interface is suppressed by phonon transport to the silicon film, which is more pronounced at low laser pulse intensities. The influence of the ballistic phonons on equivalent equilibrium temperature in the silicon film is found to be significant.  相似文献   

20.
单晶硅薄膜法向热导率分子动力学研究   总被引:6,自引:2,他引:4  
采用非平衡分子动力学方法(NEMD)研究了平均温度为 500K、厚度为 2~32nm的单晶硅薄膜的法向热导率。模拟结果表明,薄膜热导率显著低于对应温度下的体硅单晶的实验值,并随膜厚度减小以接近线性的规律减小。用声子气动力论模型的分析结果与NEMD模拟相一致,表明纳米单晶硅薄膜中声子平均自由程显著减小。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号