首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
王立  荣佳玲  曹进  朱文清  张建华 《发光学报》2012,33(12):1351-1356
通过旋涂含有CdSe/ZnS量子点(Quantum dot,QD)的溶液为发光层薄膜,制备了叠层结构的电致发光二极管,利用原子力显微镜研究了QD发光亮度、薄膜形貌与其工艺条件、参数的关系。研究结果表明:随QD厚度的增加,QD纳米粒子薄膜由单层向多层薄膜形成,QD纳米颗粒发生团聚现象,并使器件亮度降低。此外,退火温度对QD薄膜形貌及其发光强度影响很大:当退火温度高于150 ℃时,产生的热量也会造成QD纳米粒子团聚,并导致QLED器件发光性能下降。  相似文献   

2.
TiO2/CF纳米颗粒膜的光谱特性研究   总被引:1,自引:0,他引:1  
李琪  王春霞  王钊 《物理实验》2003,23(11):45-48
利用十二烷基苯磺酸钠(CF)包覆的TiO2纳米颗粒,制成纳米颗粒薄膜材料,用拉曼光谱对其进行检测。结果表明,锐钛矿型与金红石型两种结构的TiO2共存,其拉曼峰与块体TiO2相比,峰位出现了红移,本文对此现象进行了分析和讨论,荧光光谱测量结果表明,在常温下,样品本征光学带隙为3.035eV,在448nm,466nm,480nm处有激了峰.与块体TiO2相比,其本征吸收带出现蓝移和展宽,本文对此原因进行了分析。  相似文献   

3.
We have studied the electrical transport properties of two types of devices utilizing metal-oxide semiconductor nano-particles, Cu2O and Fe2O3. The metal-oxide nano-particles are embedded in a polyimide matrix through chemical reaction between the metal thin film and polyamic acid as a precursor of polyimide. To test the electron tunneling via nano-particles, Au nano-electrodes are fabricated on a SiO2/Si substrate with a 30 nm gap by electron-beam lithography. A single electron tunneling behavior was apparent in the devices with Cu2O nano-particle inserted into the nano-gap electrodes. Also, a memory effect was measured in a floating-gated memory device structure with Fe2O3 nano-particles embedded in a polyimide matrix.  相似文献   

4.
In this study, we present a simple method to improve the electrochromic properties of a nickel oxide thin film. The method involves a three-step process—(a) conducting indium tin oxide (ITO) nano-particles were first sprayed onto a conducting substrate to form a porous nano-structured ITO layer, (b) nickel oxide film was then deposited onto the nano-structured ITO layer by a spray pyrolysis technique, and (c) the substrate, ITO nano-particles layer and nickel oxide film were annealed at high temperature of 300 °C to improve adhesion of these three layers. The microstructure of the resulting electrochromic cell was investigated using scanning electron microscopy. It is evident that the nickel oxide film covers the surface of the ITO nano-particle layer and forms a nano-structured nickel oxide (NSNO) film. The switching time and contrast were characterized by Autolab PGSTAT12 potentiostat and Jasco V-570 spectrophotometer. The results suggest that the transmittance contrast and switching time of NSNO are slightly superior to those of a conventional nickel oxide (CNO) film. However, the cycling durability of NSNO can be much better than that of CNO.  相似文献   

5.
Nano-particles of Bi, Ag and Sb have been produced in an inert gas aggregation source and deposited between lithographically defined electrical contacts on SiN. The morphology of these films have been examined by atomic force microscopy and scanning electron microscopy. The Bi nano-particles stick well to the SiN substrate and take on a flattened dome shape. The Ag nano-particles also stick well to the SiN surface; however they retain a more spherical shape. Whereas, many of the Sb nano-particles bounce off the SiN surface with only a small fraction of the Sb nano-particles aggregating at defects resulting in a non-random distribution of the clusters. These nano-scale differences in the film morphology influence the viability of applying percolation theory to in situ macroscopic measurements of the film conductivity, during the deposition process. For Bi and Ag nano-particles the increase in conductivity follows a power law. The power law exponent, t, was found to be 1.27 ±0.13 and 1.40 ±0.14, for Bi and Ag respectively, in agreement with theoretical predictions of t ≈1.3 for 2D random continuum percolation networks. Sb cluster networks do not follow this model and due to the majority of the Sb clusters bouncing off the surface. Differences in the current onset times and final conductance values of the films are also discussed.  相似文献   

6.
The characteristics of boiling and critical heat flux (CHF) behavior of nano-fluids with alumina and silver nano-particles suspended in de-ionized water (pure water) were studied with circular plate heaters in the present study. Enhancements of CHF in nano-fluids in the wide range of particle sizes and concentrations were compared with those in pure water. Also, the effects of the particle deposition on CHF enhancement were investigated. All experiments were performed at the atmospheric pressure condition. The results show that the measured boiling curves in nano-fluids were shifted to the right and CHF were significantly enhanced for different nano-particle sizes and concentrations. The CHF of nano-fluids was increased as the size of the nano-particles decreased. On the other hand, nano-particle concentration value showing the maximum CHF had a critical value. In each pool boiling experiment of nano-fluids, nano-particles were deposited on the heater surface. Assuming that this phenomenon caused the CHF enhancement, pool boiling experiments of pure water were carried out with these nano-particle deposited heaters. The results of these tests were similar to those of the test of the nano-fluids for the CHF enhancement. The main cause of CHF enhancement was found to be the change of the heater surface structure. In order to analyze boiling phenomena of pure water and Al2O3 nano-fluids, boiling process was visualized by using a high speed camera.  相似文献   

7.
王涛  杨旭  刘晓斐  雷府川  高铭  胡蕴琪  龙桂鲁 《物理学报》2015,64(16):164212-164212
回音壁模式光学微腔由于其品质因子高、模式体积小等优点, 近年来在非标记性的纳米粒子探测方面得到了广泛的重视, 开展了大量的研究, 取得了重要的进展. 利用回音壁微腔的拉曼激光, 通过测量纳米粒子造成的模式劈裂的拍频, 可以实现不同环境下纳米粒子的实时探测. 与传统的稀土离子掺杂法不同, 这种方法采用腔的内禀增益, 不仅提高了应用回音壁模式微腔进行纳米粒子探测的极限, 而且避免了传统方法中稀土离子能级对泵浦光的限制, 拓展了应用范围. 这种方法还可以应用于其他材料的回音壁微腔, 如硅基微环腔等, 以及光子晶体结构、超材料等受损耗限制的系统中. 本文简单介绍了回音壁模式光学微腔进行纳米粒子探测的基本原理以及最新研究进展.  相似文献   

8.
采用直流磁控溅射的方法制备出Ir金属纳米粒子薄膜.利用扫描电子显微镜分析了纳米粒子的形态和分布以及不同工艺条件对粒子粒径及形貌的影响,表明纳米粒子的大小可通过调节溅射气体压强来控制.在25%孔度的W海绵基体内浸入6∶1∶2铝酸盐发射物质,然后在其表面沉积上厚度为200—500 nm的纳米粒子薄膜层,最后在H2气中1200℃烧结,即制成了新型纳米粒子薄膜阴极.利用阴极发射微观均匀性测试仪对纳米粒子薄膜阴极和传统覆膜阴极的热电子发射的均匀性进行了对比研究.采用飞行时间质谱仪测试了真空本底、纳米粒子薄膜阴极、传统覆膜阴极等各种阴极蒸发物的成分,研究了阴极蒸发速率与阴极温度的关系,比较了不同阴极蒸发速率的大小.研究了Ba-W阴极覆上纳米粒子薄膜后的发射特性. 关键词: 纳米粒子薄膜 热阴极 发射均匀性 蒸发  相似文献   

9.
The small lattice mismatch and sixfold symmetry offered by the (0001) planes of sapphire make it an ideal substrate candidate for the deposition of (111) CdTe films. There, however, exists a wide disparity in film quality among various researchers with both single crystal and highly twinned, multidomain films being reported. We have developed a pulsed laser deposition process that enables us to deposit nearly single-domain (111) CdTe films exhibiting excellent surface morphology. Such films are deposited on as-received sapphire substrates in vacuum conditions where oxygen is readily available. If, however, film deposition is preceded by the deposition of a submonolayer of aluminum prior to film growth then a secondary CdTe domain emerges with an in-plane orientation having a 180°-in-plane offset from the first domain. These multidomain films show poor crystallographic and morphological properties, similar to what has been reported elsewhere. It is concluded that the singly terminated (0001) sapphire substrates are a prerequisite for the deposition of high-quality (111) CdTe films.  相似文献   

10.
我们用混合物理化学气相沉积法(hybrid physical-chernical vapor deposition简称为HPCVD)以氩气为背景气体,在不锈钢衬底上于不同条件下制备了一批MgB2超导薄膜样品.用扫描电子显微镜获取了相关的SEM图像,并对膜的成分进行了能谱分析(EDX)的.当把不锈钢衬底MgB2超导薄膜弯曲不同角度之后,膜面上均出现了裂纹.裂纹的数量和宽度随弯曲的角度的增大而增加,但是膜始终紧紧地覆着在衬底上不脱落.因此我们可以说覆着在不锈钢衬底上的MgB2超导薄膜具有了很好的韧性.在膜中我们也发现有大量的数十纳米大小的晶粒.这个尺寸的纳米粒子的作用可以用来平衡MgB2膜内结构和表面晶粒的活性之间的相互作用.MgB2纳米粒子的存在是MgB2超导膜表现出韧性的关键角色.  相似文献   

11.
The phonon thermal contribution to the melting temperature of nano-particles is inspected. The discrete summation of phonon states and its corresponding integration form as an approximation for a nano-particle or for a bulk system have been analyzed. The discrete phonon energy levels of pure size effect and the wave-vector shifts of boundary conditions are investigated in detail. Unlike in macroscopic thermodynamics, the integration volume of zero-mode of phonon for a nano-particle is not zero, and it plays an important role in pure size effect and boundary condition effect. We find that a nano-particle will have a rising melting temperature due to purely finite size effect; a lower melting temperature bound exists for a nano-particle in various environments, and the melting temperature of a nano-particle with free boundary condition reaches this lower bound. We suggest an easy procedure to estimation the melting temperature, in which the zero-mode contribution will be excluded, and only several bulk quantities will be used as input. We would like to emphasize that the quantum effect of discrete energy levels in nano-particles, which is not present in early thermodynamic studies on finite size corrections to melting temperature in small systems, should be included in future researches.  相似文献   

12.
Pulsed laser deposition technique is used for deposition of tungsten-doped indium oxide films. The effect of film thickness on structural, optical and electrical properties was studied using X-ray diffraction (XRD), atomic force microscopy, UV-visible spectroscopy, and electrical measurements. X-ray diffraction study reveals that all the films are highly crystalline and oriented along (2 2 2) direction and the film crystallinity increases with increase in film thickness. Atomic force microscopy analysis shows that these films are very smooth with root mean square surface roughness of ∼1.0 nm. Bandgap energy of the films depends on thickness and varies from 3.71 eV to 3.94 eV. It is observed that resistivity of the films decreases with thickness, while mobility increases.  相似文献   

13.
采用真空蒸镀方法,利用液体衬底在沉积过程中的线性扩散过程,在玻璃表面制备出斜率仅为10-5的楔形金薄膜逾渗系统,并用四引线方法测量了从该薄膜系统中得到的均匀无序金薄膜的导电特性.实验结果表明:和通常的平整薄膜逾渗系统相比,该薄膜系统呈现更为强烈的跳跃电导和隧道效应. 关键词: 带状薄膜 跳跃电导 隧道效应  相似文献   

14.
Silver films were deposited on glass substrates under different deposition conditions, i.e. different film thicknesses, deposition rates and deposition angles. Their optical properties were measured by spectrophotometry in the spectral range of 185–3300 nm. The Kramers–Kronig method was used to analyze the reflectivity curves of the silver films to obtain their optical constants. The influence of substrate temperature on the microstructure of thin metallic films, the structure zone model (SZM), is well established, whereas there has been some previous work on the influence of film thickness and morphology, deposition rate and deposition angle on the microstructure and morphology of thin films. An effective medium approximation (EMA) analysis was used to establish the relationship between the atomic force microscopy results, SZM predictions and EMA results, and hence the optical properties of silver thin films. The predictions of the Drude free-electron theory are compared with experimental results for dielectric functions of Ag films produced under different deposition conditions. The real part of the dielectric constant increases with film thickness and decreases with increasing deposition rate and with increasing incidence angle, whereas the imaginary part of the dielectric constant decreases with increasing film thickness and deposition rate and with decreasing incidence angle over the whole energy range measured, including the interaband and interband regions.  相似文献   

15.
于天燕  秦杨  刘定权 《物理学报》2013,62(21):214211-214211
对不同温度下沉积的ZnS薄膜的结晶情况和光学特性进行了研究, 结果表明:沉积温度对ZnS薄膜的物理和光学特性有较大影响, 不同的温度沉积的ZnS薄膜具有不同的择优取向, 牢固度也大不相同; 不同沉积温度下, ZnS薄膜的光学常数也不尽相同. 温度为115 ℃和155 ℃时, ZnS薄膜的物理性能和光学性能较差, 不适合空间用光学薄膜的研制使用. 而190 ℃和230 ℃沉积温度下所得薄膜具有较好的物理和光学性能, 适合于不同要求的空间用薄膜器件的研制使用. 关键词: 硫化锌薄膜 沉积温度 表面形貌 光学常数  相似文献   

16.
Carbon films are fabricated for the first time using an inexpensive and ecologically safe modified method of close space sublimation at atmospheric pressure. They are deposited onto quartz, glass, glass ceramic (Pyroceram), and silicon substrates. The main properties of the films (such as the growth rate, morphology and structure, optical properties, the dependences of these properties on the deposition temperature and the substrate material) are studied by X-ray diffraction, atomic force microscopy, multiangular ellipsometry, and the measurement of transmission and reflectance spectra in the visible and near ultraviolet regions. The growth rate is 5 nm/min at a film nucleation temperature of 800°C. The film thickness varies from 0.2 to 2.2 μm, and the minimum surface roughness is 0.5 nm. The refractive indices of the films range from 1.3 to 1.8 depending on the growth and subsequent heat treatment conditions. The optical energy gap is 5.4 eV.  相似文献   

17.
Titanium dioxide (TiO2) thin films with different nanostructures such as nano-particles and separated vertical columns were grown by glancing angle deposition (GLAD) in an electron beam evaporation system. The photocatalytic properties of grown TiO2 films with different deposition angles and different annealing temperatures were evaluated by following decomposition of methyl orange under ultraviolet (UV) light irradiation. The results suggest that increased surface area due to the GLAD process could improve the photocatalytic properties of TiO2 films.  相似文献   

18.
陈大明  李元勋  韩莉坤  龙超  张怀武 《中国物理 B》2016,25(6):68403-068403
Barium ferrite(Ba M) thin films are deposited on platinum coated silicon wafers by pulsed laser deposition(PLD).The effects of deposition substrate temperature on the microstructure,magnetic and microwave properties of Ba M thin films are investigated in detail.It is found that microstructure,magnetic and microwave properties of Ba M thin film are very sensitive to deposition substrate temperature,and excellent Ba M thin film is obtained when deposition temperature is 910℃ and oxygen pressure is 300 m Torr(1 Torr = 1.3332×10~2Pa).X-ray diffraction patterns and atomic force microscopy images show that the best thin film has perpendicular orientation and hexagonal morphology,and the crystallographic alignment degree can be calculated to be 0.94.Hysteresis loops reveal that the squareness ratio(M_r/M_s) is as high as 0.93,the saturated magnetization is 4004 Gs(1 Gs = 10~4T),and the anisotropy field is 16.5 kOe(1 Oe = 79.5775 A·m~(-1)).Ferromagnetic resonance measurements reveal that the gyromagnetic ratio is 2.8 GHz/kOe,and the ferromagnetic resonance linewith is108 Oe at 50 GHz,which means that this thin film has low microwave loss.These properties make the Ba M thin films have potential applications in microwave devices.  相似文献   

19.
The basic mechanisms of ion-surface interaction relevant to film growth are discussed; the methods of ionization-assisted evaporation processes are outlined; and the properties of deposited metal and compound films are discussed. The ultimate objective in thin-film deposition is the growth of thin films with predictable, stable, and reproducible properties equal to or better than those of bulk materials and, in addition, the synthesis of new materials. It is pointed out that ionization-assisted processes provide the means to achieve this objective, with the technique selected depending entirely on the application for which the film is required. The processes are many and varied but have a common element in that a principal aim is to achieve maximum ionization of the depositing atoms/molecules and/or the reacting gas species. The techniques have varying degrees of ionization efficiency and deposition rates, but all offer many advantages over conventional evaporative processes through the ion/surface interaction mechanisms. It is concluded that future developments will see better theoretical understanding of the relationship of the process parameters to film properties, the development of advanced ion-assisted deposition technology, and they synthesis of new materials  相似文献   

20.
《中国物理 B》2021,30(9):96801-096801
Vanadium dioxide(VO_2) is a strongly correlated material, and it has become known due to its sharp metal–insulator transition(MIT) near room temperature. Understanding the thermal properties and their change across MIT of VO_2 thin film is important for the applications of this material in various devices. Here, the changes in thermal conductivity of epitaxial and polycrystalline VO_2 thin film across MIT are probed by the time-domain thermoreflectance(TDTR) method.The measurements are performed in a direct way devoid of deposition of any metal thermoreflectance layer on the VO_2 film to attenuate the impact from extra thermal interfaces. It is demonstrated that the method is feasible for the VO_2 films with thickness values larger than 100 nm and beyond the phase transition region. The observed reasonable thermal conductivity change rates across MIT of VO_2 thin films with different crystal qualities are found to be correlated with the electrical conductivity change rate, which is different from the reported behavior of single crystal VO_2 nanowires. The recovery of the relationship between thermal conductivity and electrical conductivity in VO_2 film may be attributed to the increasing elastic electron scattering weight, caused by the defects in the film. This work demonstrates the possibility and limitation of investigating the thermal properties of VO_2 thin films by the TDTR method without depositing any metal thermoreflectance layer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号