首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Highly crystalline and transparent CdS films are grown by utilizing the vacuum thermal evaporation (VTE) method. The structural, surface morphological, and optical properties of the films are studied and compared with those prepared by chemical bath deposition (CBD). It is found that the films deposited at a high substrate temperature (200 ℃) have a preferential orientation along (002) which is consistent with CBD-grown films. Absorption spectra reveal that the films are highly transparent and the optical band gap values are found to be in a range of 2.44 eV-2.56 eV. Culnl_xGaxSe2 (CIGS) solar cells with in-situ VTE-grown CdS films exhibit higher values of Voc together with smaller values of Jsc than those from CBD. Eventually the conversion efficiency and fill factor become slightly better than those from the CBD method. Our work suggests that the in-situ thermal evaporation method can be a competitive alternative to the CBD method, particularly in the physical- and vacuum-based CIGS technology.  相似文献   

2.
Copper sulfide thin films are deposited onto different substrates at room temperature using the thermal evaporation technique. X-ray diffraction spectra show that the film has an orthorhombicchalcocite (7-Cu2S) phase. The atomic force microscopy images indicate that the film exhibits nanoparticles with an average size of nearly 44 nm. Specrtophotometric measurements for the transmittance and reflectance are carried out at normal incidence in a spectral wavelength range of 450 nm-2500 nm. The refractive index, n, as well as the absorption index, k is calculated. Some dispersion parameters are determined. The analyses of el and e2 reveal several absorption peaks. The analysis of the spectral behavior of the absorption coefficient, c~, in the absorption region reveals direct and indirect allowed transitions. The dark electrical resistivity is studied as a function of film thickness and temperature. Tellier's model is adopted for determining the mean free path and bulk resistance.  相似文献   

3.
Compounds with the formula Cr2-xZr0.5xMg0.5xMo3O12(x = 0.0, 0.3, 0.5, 0.9, 1.3, 1.5, 1.7, 1.9) are synthesized, and the effects of Zr4+ and Mg2+ co-incorporation on the phase transition, thermal expansion, and Raman mode are investigated. It is found that Cr2-xZr0.5xMg0.5xMo3O12 crystallize into monoclinic structures for x 〈 1.3 and orthorhombic structures for x _〉 1.5 at room temperature. The phase transition temperature from a monoclinic to an orthorhombic structure of Cr2Mo3O12 can be reduced by the partial substitution of (ZrMg)6+ for Cr3+. The overall linear thermal expansion coefficient decreases with the increase of the (ZrMg)6+ content in an orthorhombic structure sample. The co-incorporation of Zr4+ and Mg2+ in the lattice results in the occurrence of new Raman modes and the hardening of the symmetric vibrational modes, which are attributed to the MoO4 tetrahedra sharing comers with ZrO6/MgO6 octahedra and to the strengthening of Mo-O bonds due to less electronegativities of Zr4+ and Mg2+ than Cr3+, respectively.  相似文献   

4.
Mg-doped Sb3Te films are proposed to improve the performance of phase-change memory (PCM). We prepare Mg- doped Sb3Te films and investigate their crystallization behaviors, structural, optical and electrical properties. We find that Mg-doping can increase the crystallization temperature, enhance the activation energy, and improve the 10-year data retention of Sb3Te. Especially Mg25.19(Sb3Te)74.81 shows higher Tc (~ 190℃) and larger Ea (~ 3.49 eV), which results in a better data retention maintaining for 10 yr at ~ 112 ℃. Moreover Ra/Rc value is also improved. These excellent properties make Mg-Sb-Te material a promising candidate for the phase-change memory (PCM).  相似文献   

5.
The potential energy snrface of a CO2-N2 mixture is determined by using an inversion method, together with a new collision integral correlation [J. Phys. Chem. R@ Data 19 1179 (1990)]. With the new invert potential, the transport properties of CO2-N2 mixture are presented in a temperature range front 273.15 K to 3273.15 K at low density by employing the Chapman-Enskog scheme and the Wang Chang-Uhlenbeck de Boer theory, consisting of a viscosity coefficient, a thermal conductivity coefficient, a binary diffusion coefficient, and a thermal diffusion factor. The accuracy of the predicted results is estimated to be 2% for viscosity, 5% for thermal conductivity, and 10% for binary diffusion coefficient.  相似文献   

6.
Positron annihilation lifetime and Doppler broadening of annihilation line techniques have been used to obtain information about the small pore structure and size of porous SiO2 thin film produced by sputtered Al-Si thin film and etched Al-Si thin film. The film is prepared by an Al/Si 75:25 at.-% (A175Si25) target with the radiofrequency (RF) power of 66 W at room temperature. A 5 wt.-% phosphoric acid solution is used to etch the Al cylinders. All the A1 cylinders dissolved in the solution after 15 h at room temperature, and the sample is subsequently rinsed in pure water. In this way, the porous SiO2 on the Si substrate is produced. From our results, the values of all lifetime components in the spectra of Al-Si thin film are less than 1 ns, but the value of one of the lifetime components in the spectra of porous SiO2 thin film is τ = 7.80 ns. With these values of lifetime, RTE (Rectangular Pore Extension) model has been used to analyze the pore size.  相似文献   

7.
ZrSiN thin films are synthesized by using plasma focus through various numbers of focus shots (10, 20, and 30), with samples placed at 9 cm away from the tip of the anode. Crystal structures, surface morphologies, and elemental compositions of ZrSiN films are characterized by an X-ray diffractometer (XRD) and scanning electron microscope (SEM) attached with energy dispersive X-ray spectroscopy (EDS). XRD patterns confirm the formations of polycrystalline ZrSiN films. Crystallinity of nitride increases with the increase of focus shot number. The average crystallite size of zirconium nitride increases from 27 ± 3 nm to 73±8 nm and microstrain decreases from 2.28 to 1.0 with the increase of the focus shot number. SEM results exhibit the formations of granular and oval-shaped microstructures, depending on the number of focus shots. EDS results confirm the presences of silicon, zirconium, nitrogen, and oxygen in the composite films. The content values of Zr and N in the composite films increase with the increase of the focus shot number.  相似文献   

8.
This paper reports that the n-type organic thin-fihn transistors have been fabricated by using C60 as the active layer and polystyrene as the dielectric. The properties of insulator and the growth characteristic of C60 film were carefully investigated. By choosing different source/drain electrodes, a device with good performance can be obtained. The highest electron field effect mobility about 1.15 cm2/(V. s) could reach when Barium was introduced as electrodes. Moreover, the C60 transistor shows a negligible 'hysteresis effect' contributed to the hydroxyl-free of insulator. The result suggests that polymer dielectrics are promising in applications among n-type organic transistors.  相似文献   

9.
Zirconium(Zr) thin films deposited on Si(100) by pulsed laser deposition(PLD) at different pulse repetition rates are investigated. The deposited Zr films exhibit a polycrystalline structure, and the X-ray diffraction(XRD) patterns of the films show the α Zr phase. Due to the morphology variation of the target and the laser–plasma interaction, the deposition rate significantly decreases from 0.0431 /pulse at 2 Hz to 0.0189 /pulse at 20 Hz. The presence of droplets on the surface of the deposited film, which is one of the main disadvantages of the PLD, is observed at various pulse repetition rates. Statistical results show that the dimension and the density of the droplets increase with an increasing pulse repetition rate. We find that the source of droplets is the liquid layer formed under the target surface. The dense nanoparticles covered on the film surface are observed through atomic force microscopy(AFM). The root mean square(RMS) roughness caused by valleys and islands on the film surface initially increases and then decreases with the increasing pulse repetition rate.The results of our investigation will be useful to optimize the synthesis conditions of the Zr films.  相似文献   

10.
Zn and Co multi-doped CeO2 thin films have been prepared using an anodic electrochemical method. The structures and magnetic behaviors are characterized by several techniques, in which the oxygen states in the lattice and the absorptive oxygen bonds at the surface are carefully examined. The absorptive oxygen bond is about 50% of the total oxygen bond by using a semi-quantitative method. The value of actual stoichiometry δ is close to 2. The experimental results indicate that the thin films are of a cerium oxide-based solid solution with few oxygen vacancies in the lattice and many absorptive oxygen bonds at the surface. Week ferromagnetic behaviors were evidenced by observed M–H hysteresis loops at room temperature. Furthermore, an evidence of relative ferromagnetic contributions was revealed by the temperature dependence of magnetization. It is believed that the ferromagnetic contributions exhibited in the M–H loops originate from the absorptive oxygen on the surface rather than the oxygen vacancies in the lattice.  相似文献   

11.
A novel single-cavity narrowband Fabry-Perot (FP) polarizing filter at normal incidence, constructed from a sandwich structure with sculptured anisotropic space layer and symmetric isotropic HR mirrors, is designed and prepared. The optical performances of transmittance, phase shift, central wavelength, and bandwidth for two polarized states are analyzed with the characteristic matrix. The numerical studies accord reasonably well with the experimental results. It is demonstrated that the polarization state of the electromagnetic wave and phase shift can be modulated by employing an anisotropic space layer in the polarizing beam splitter system. The birefringence of the anisotropic space layer provides a sophisticated phase modulation by varying the incidence angles over a broad range to have a wide-angle phase shift.  相似文献   

12.
This study presents the fabrication and temperature sensing properties of sensors based on aluminium phthalocyanine chloride(AlPcCl)thin films.To fabricate the sensors,50-nm-thick electrodes with 50-μm gaps between them are deposited on glass substrates.AlPcCl thin films with thickness of 50–100 nm are deposited in the gap between electrodes by thermal evaporation.The resistance of the sensors decreases with increasing thickness and the annealing at 100℃ results in an increase in the initial resistance of sensors up to 24%.The sensing mechanism is based on the change in resistance with temperature.For temperature varying from 25℃ to 80℃,the change in resistance is up to 60%.Simulation is carried out and results obtained coincide with experimental data with an error of±1%.  相似文献   

13.
An improved method of fitting point-by-point is proposed to determine the absorption coefficient from infrared(IR)transmittance. With no necessity of empirical correction factors, the absorption coefficient can be accurately determined for the films with thin thicknesses. Based on this method, the structural properties of the hydrogenated amorphous silicon oxide materials(a-SiOx:H) are investigated. The oxygen-concentration-dependent variation of the Si–O–Si and the Si–H related modes in a-SiOx:H materials is discussed in detail.  相似文献   

14.
The symmetric deposition technique is often used to improve the uniformity of sculptured thin film (STF). In this paper, optical properties of STF with the columnar angles 4-/3 are analyzed theoretically, based on the characteristic matrix method for extraordinary waves. Then, the transmittances of uniformity monolayer and bilayer STF in symmetrical style are calculated to show the effect of the bilayer structure on the optical properties of STF. The inhomogeneity of STF is involved in analyzing the differences in transmittance and phase retardation between monolayer and bilayer STF deposited in symmetric style. The results show that optical homogeneity of STF can be improved by depositing in symmetric style at the normal incidence, but it is not the same case as the oblique incidence.  相似文献   

15.
The effects of annealing rate and morphology of sol–gel derived zinc oxide(ZnO)thin films on the performance of inverted polymer solar cells(IPSCs)are investigated.ZnO films with different morphologies are prepared at different annealing rates and used as the electron transport layers in IPSCs.The undulating morphologies of ZnO films fabricated at annealing rates of 10 C/min and 3 C/min each possess a rougher surface than that of the ZnO film fabricated at a fast annealing rate of 50 C/min.The ZnO films are characterized by atomic force microscopy(AFM),optical transmittance measurements,and simulation.The results indicate that the ZnO film formed at 3 C/min possesses a good-quality contact area with the active layer.Combined with a moderate light-scattering,the resulting device shows a 16%improvement in power conversion efficiency compared with that of the rapidly annealed ZnO film device.  相似文献   

16.
FePt films with a high degree of order S of the L10 structure (S 〉 0.90) and well defined [001] crystalline growth perpendicular to the film plane are fabricated on thermally oxidized Si substrates by the addition of ZnO and a successive rapid thermal annealing (RTA) process. The optimum condition to prepare high-ordering L10 FePtZnO films is 20 vol% ZnO addition and 450 ℃ annealing. The effect of the ZnO additive on the ordering process of the L10 FePtZnO films is discussed. In the annealing process, Zn atoms move to the film surface and evaporate. The motion of the Zn atoms accelerates the intergrain exchange and decreases the ordering temperature.  相似文献   

17.
张婷  丁玲红  张伟风 《中国物理 B》2012,21(4):47301-047301
La0.67Ca0.33MnO3 thin films are fabricated on fluorine-doped tin oxide conducting glass substrates by a pulsed laser deposition technique with SrTiO3 used as a buffer layer. The current-voltage characteristics of the heterojunetions exhibit an asymmetric and resistance switching behaviour. A homogeneous interface-type conduction mechanism is also reported using impedance spectroscopy. The spatial homogeneity of the charge carrier distribution leads to field- induced potential-barrier change at the Au-La0.67Ca0.33MnO3 interface and a concomitant resistance switching effect. The ratio of the high resistance state to the low resistance state is found to be as high as 1.3 x 10^4% by simulating the AC electric field. This colossal resistance switching effect will greatly improve the signal-to-noise ratio in nonvolatile memory applications.  相似文献   

18.
Co-doped Bi 5 FeTi 3 O 15 thin films (BFCT-x,Bi 5 Fe 1-x Co x Ti 3 O 15) were prepared using a sol-gel technique.XRD patterns confirm their single phase Aurivillius structure,and the corresponding powder Rietveld analysis indicates the change of space group around x=0.12.The magnetic hysteresis loops are obtained and ferromagnetism is therefore confirmed in BFCT-x thin films.The remanent magnetization (M r) first increases and reaches the maximum value of 0.42 emu/cm 3 at x=0.12 due to the possible Fe 3+-O-Co 3+ ferromagnetic coupling.When x=0.25,the M r increases again because of the dominant Fe 3+-O-Co 3+ ferromagnetic coupling.The remanent polarization (2P r) of BFCT-0.25 was measured to be as high as 62 μC/cm 2,a 75% increase when compared with the non-doped BFCT-0 films.The 2P r remains almost unchanged after being subjected to 5.2 × 10 9 read/write cycles.Greatly enhanced ferroelectric properties are considered to be associated with decreased leakage current density.  相似文献   

19.
An enhancement-mode (E-mode) A1GaN/GaN high electron mobility transistor (HEMTs) was fabricated with 15-nm A1GaN barrier layer. E-mode operation was achieved by using fluorine plasma treatment and post-gate rapid thermal annealing. The thin barrier depletion-HEMTs with a threshold voltage typically around -1.7 V, which is higher than that of the 22-nm barrier depletion-mode HEMTs (-3.5 V). Therefore, the thin barrier is emerging as an excellent candidate to realize the enhancement-mode operation. With 0.6-tim gate length, the devices treated by fluorine plasma for 150-W RF power at 150 s exhibited a threshold voltage of 1.3 V. The maximum drain current and maximum transconductance are 300 mA/mm, and 177 mS/ram, respectively. Compared with the 22-nm barrier E-mode devices, VT of the thin barrier HEMTs is much more stable under the gate step-stress,  相似文献   

20.
Sb-doped ZnO thin films with different values of Sb content (from 0 to 1.1 at.%) are deposited by the sol-gel dip- coating method under different sol concentrations. The effects of Sb-doping content, sol concentration, and annealing ambient on the structural, optical, and electrical properties of ZnO films are investigated. The results of the X-ray diffraction and ultraviolet-visible spectroscopy (UV-VIS) spectrophotometer indicate that each of all the films retains the wurtzite ZnO structure and possesses a preferred orientation along the c axis, with high transmittance (〉 90%) in the visible range. The Hall effect measurements show that the vacuum annealed thin films synthesized in the sol concentration of 0.75 mol/L each have an adjustable n-type electrical conductivity by varying Sb-doping density, and the photoluminescence (PL) spectra revealed that the defect emission (around 450 nm) is predominant. However, the thin films prepared by the sol with a concentration of 0.25 mol/L, despite their poor conductivity, have priority in ultraviolet emission, and the PL peak position shows first a blue-shift and then a red-shift with the increase of the Sb doping content.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号