首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 109 毫秒
1.
柴玉华  郭玉秀  卞伟  李雯  杨涛  仪明东  范曲立  解令海  黄维 《物理学报》2014,63(2):27302-027302
柔性有机非易失性场效应晶体管存储器具有柔性、质轻、成本低、可低温及大面积加工等优点,在射频识别标签、柔性存储、柔性集成电路和大面积柔性显示等领域展现出巨大的应用前景.本文在介绍柔性有机非易失性场效应晶体管存储器的衬底材料、器件结构和性能参数的基础上,总结了柔性有机非易失性场效应晶体管存储器的分类,并讨论了机械应力和不同温度对柔性有机非易失性场效应晶体管存储器性能参数的影响,最后展望了柔性有机非易失性场效应晶体管存储器的应用前景以及所面临的挑战.  相似文献   

2.
有机场效应晶体管材料及器件研究进展   总被引:10,自引:0,他引:10  
刘承斌  范曲立  黄维  王迅 《物理》2005,34(6):424-432
有机场效应晶体管(organic field—effect transistor,OFET)作为新一代半导体晶体管因其广阔的应用前景和近年来技术上的突飞猛进,使之成为微电子和信息领域科学研究和产品开发中热门的话题之一.文章慨述了有机场效应晶体管的材料研究、器件制备技术以及有机场效应晶体管在各领域中应用的最新进展.  相似文献   

3.
采用聚合物共混的方法制备了体异质结薄膜,将其作为光敏半导体层制备了有机场效应光晶体管.利用原子力显微镜表征了共混薄膜的分相情况,探究了器件提高激子解离效率的机理,并对比了聚合物共混前后有机场效应晶体管的光电性能变化和相分离情况.结果表明:制备的聚合物共混光晶体管在微弱光线条件下(0.038 mW/cm2,808 nm)具有较高的光敏性(为106).通过共混聚合物半导体材料制备体异质结薄膜可以有效地提高激子解离的效率,通过双层绝缘层能进一步降低光晶体管的暗电流,从而提高器件的光敏性.  相似文献   

4.
采用生物材料(蛋清)作为栅绝缘层制备了基于C60为有源层的有机场效应晶体管。器件展现出了合理的电学特性,场效应迁移率和阈值电压分别为2.59 cm2·V-1·s-1和1.25 V。有机场效应晶体管展现良好性能的原因是蛋清具有较高的介电常数及热退火后形成的光滑表面形貌。实验结果表明,对于制备有机场效应晶体管来说,蛋清是一种有前途的绝缘层材料。  相似文献   

5.
聂国政  彭俊彪  周仁龙 《物理学报》2011,60(12):127304-127304
制备了CuI/Al为源极和漏电极的并五苯基场效应晶体管.相对于纯金属(Al, Au)电极的晶体管,所研制的晶体管的迁移率、阈值电压VT、开关电流比Ion/Ioff等参数都有明显改善.研究发现,在Al电极与并五苯半导体之间引入CuI作为空穴注入层,能够明显降低Al电极与并五苯之间的空穴注入势垒.紫外-可见光谱和X射线光电子能谱数据表明,这种空穴注入势垒的降低源自并五苯和Al向CuI的电子转移. 关键词: 有机场效应晶体管 CuI/Al双层源漏电极 电子转移  相似文献   

6.
蒋晶  郑灵程  王倩  吴峰  程晓曼 《发光学报》2015,36(8):941-946
采用溶液化的方法制备了以PMMA为绝缘层、P3HT为有源层的有机场效应晶体管.研究了P3HT有源层和PMMA绝缘层的旋涂速度对器件性能的影响.实验结果表明,当P3HT和PMMA的旋涂速度均为2 000 r/min时,器件的性能最佳.峰值场效应迁移率为6.84×10-2 cm2·V-1·s-1.结果表明,选择适当的旋涂速度是一种有效提高溶液化制备有机场效应晶体管性能的方法.  相似文献   

7.
采用溶液制备法制备了用PVA作为绝缘层、P3HT作为有源层的有机场效应晶体管,,研究了不同浓度PVA栅绝缘层对器件性能的影响。实验结果显示,以质量分数为8%的PVA溶液制备的栅绝缘层具有最好的性能,器件的场效应迁移率为0.31 cm2·V-1·s-1,阈值电压为-6 V。进一步分析了PVA栅绝缘层浓度对器件性能提高的原因,结果表明,对于制备溶液化的有机场效应晶体管,选取合适的PVA栅绝缘层浓度非常重要。  相似文献   

8.
生物感知系统具有高并行、高容错、自适应和低功耗等独特优点.采用神经形态器件实现生物感知功能的仿生,在脑机接口、智能感知、生物假体等领域具有重大应用前景.与其他神经形态器件相比,多端口神经形态晶体管不仅可以同时实现信号的传输和训练学习,还可以对多路信号进行非线性的时空整合与协同调控.然而,传统刚性神经形态晶体管很难实现弯曲变形以及和人体密切贴合,限制了神经形态器件应用范围.所以,具有良好弯曲特性的柔性神经形态晶体管的研究成为了最近的研究重点.本文首先介绍了多种柔性神经形态晶体管的研究进展,包括器件结构、工作原理和基本功能;另外,本文还将介绍上述柔性神经形态晶体管在仿生感知领域中的应用;最后给出上述研究领域的总结和简单展望.  相似文献   

9.
田雪雁  赵谡玲  徐征  姚江峰  张福俊  贾全杰  陈雨  龚伟  樊星 《物理学报》2011,60(5):57201-057201
为了进一步洞悉高分子薄膜自组织机理和高分子有机场效应晶体管(OFET)载流子迁移率之间的直接关联性,本工作采用先进的同步辐射掠入射X射线衍射(GIXRD)技术,研究了高分子OFET中高分子半导体高度区域规则的聚(3-己基噻吩)(RR-P3HT)工作层薄膜,由不同退火温度所导致的薄膜自组织微观结构的变化.GIXRD测试实验结果显示了,对于不同高分子薄膜制备方法(旋涂法及滴膜法)及不同溶液浓度(RR-P3HT溶液浓度为2.5 mg/ml及3.5 mg/ml)制备的RR-P3HT有机半导体工作层,在氮气气氛下, 关键词: 高分子有机场效应晶体管 同步辐射掠入射X射线衍射 自组织 退火  相似文献   

10.
铁电负电容场效应晶体管可以突破传统金属氧化物半导体场效应晶体管中的玻尔兹曼限制,将亚阈值摆幅降低到60 m V/dec以下,极大地改善了晶体管的开关电流比和短沟道效应,有效地降低了器件的功耗,为实现晶体管特征尺寸的减小和摩尔定律的延续提供了选择.本文分析总结了国内外近年来关于铁电负电容场效应晶体管代表性的研究进展,为进一步研究提供参考.首先介绍了铁电负电容场效应晶体管的研究背景及其意义;然后总结了铁电材料的基本性质和种类,并对铁电材料负电容的物理机制和铁电负电容场效应晶体管的工作原理进行了讨论;接下来从器件沟道材料维度的角度,分别总结了最近几年基于三维沟道材料和二维沟道材料且与氧化铪基铁电体结合的铁电负电容场效应晶体管的研究成果,并对器件的亚阈值摆幅、开关电流比、回滞电压和漏电流等性能的改善进行了分析概述;最后对铁电负电容场效应晶体管目前存在的问题和未来的发展方向作了总结与展望.  相似文献   

11.
Organic field-effect transistors (OFETs) were fabricated based on double active layers structure. Different substrate temperatures and thermal treatment were adopted to prepare double active layers and optimize film morphology. The grain size of organic films can be effectively controlled by the change in substrate temperature in the process of deposition. An improved device performance was obtained compared with conventional single layer devices. This result is attributed to the introduction of double active layers. We believe that this kind of optimization will simultaneously improve charge injection and transportation of OFETs.  相似文献   

12.
Fabrication of ambipolar organic field-effect transistors (OFETs) is essential for the achievement of an organic complementary logic circuit. Ambipolar transports in OFETs with heterojunction structures are realized. We select pentacene as a P-type material and N,N'-bis(4-trifluoromethylben-zyl)perylene-3,4,9,10-tetracarboxylic diimide (PTCDI-TFB) as a n-type material in the active layer of the OFETs. The field-effect transistor shows highly air-stable ambipolar characteristics with a field-effect hole mobility of 0.18~cm2/(V.s) and field-effect electron mobility of 0.031~cm2/(V.s). Furthermore the mobility only slightly decreases after being exposed to air and remains stable even for exposure to air for more than 60 days. The high electron affinity of PTCDI-TFB and the octadecyltrichlorosilane (OTS) self-assembly monolayer between the SiO2 gate dielectric and the organic active layer result in the observed air-stable characteristics of OFETs with high mobility. The results demonstrate that using the OTS as a modified gate insulator layer and using high electron affinity semiconductor materials are two effective methods to fabricate OFETs with air-stable characteristics and high mobility.  相似文献   

13.
Micropatterning and transferring of polymeric semiconductor thin films by hot lift-off and polymer bonding lithography in fabrication of OFETs with polymeric dielectric on the flexible substrate was proposed. The desired polymeric semiconductor patterns were fabricated on the flat polydimethylsiloxane (PDMS) surface with a selective lift-off method we proposed previously. The isolated and well defined polymeric semiconductor patterns left on the flat PDMS surface can be further transferred to the gate polymeric dielectric surface by polymer bonding lithography due to the low interfacial energy of PDMS. The transistor fabricated with this ‘dry’ process has a higher field-effect mobility compared with that using spin coated semiconductor layer.  相似文献   

14.
As displays and electronics evolve to become lighter, thinner, and more flexible, the choice of substrate continues to be critical to their overall optimization. The substrate directly affects improvements in the designs, materials, fabrication processes, and performance of advanced electronics. With their inherent benefits such as surface quality, optical transmission, hermeticity, and thermal and dimensional stability, glass substrates enable high-quality and long-life devices. As substrate thicknesses are reduced below 200 μm, ultra-slim flexible glass continues to provide these inherent benefits to high-performance flexible electronics such as displays, touch sensors, photovoltaics, and lighting. In addition, the reduction in glass thickness also allows for new device designs and high-throughput, continuous manufacturing enabled by R2R processes. This paper provides an overview of ultra-slim flexible glass substrates and how they enable flexible electronic device optimization. Specific focus is put on flexible glass’ mechanical reliability. For this, a combination of substrate design and process optimizations has been demonstrated that enables R2R device fabrication on flexible glass. Demonstrations of R2R flexible glass processes such as vacuum deposition, photolithography, laser patterning, screen printing, slot die coating, and lamination have been made. Compatibility with these key process steps has resulted in the first demonstration of a fully functional flexible glass device fabricated completely using R2R processes.  相似文献   

15.
The article shows the comprehensive results of the experiments, conducted in order to select the appropriate metal layers, for back absorber contacts, to apply in flexible, thin-film photovoltaic cells based on cadmium telluride. Preliminary selection of investigated materials was made on the basis of general knowledge and physical data. Deposition techniques, as well as layer parameters, were adjusted to the specific flexible solar cell’s needs. Selected metal layers were deposited either by physical vapour deposition (PVD) or screen-printing method (SP) and tested in terms of their flexibility, thermal resistance, as well as adhesion to CdTe layer. Practical verification of selected configurations is proved by the complete construction of the device.  相似文献   

16.
《Current Applied Physics》2018,18(11):1415-1421
Unlike ordinary organic field-effect transistors (OFETs), saturation current is hardly to be found in vertical OFETs (VOFETs). Moreover, the fabrication process of patterned sourced for VOFETs is quite complex. In this current work, a simple solution processed VOFET with directly deposited intermediate silver source electrode has been demonstrated. The VOFET exhibits a high leakage current that induces an inversion polarity of its transistor behavior. Interestingly, a well-defined saturation current was observed in the linear scale of transfer characteristic. The VOFET operated with high-current density >280 mA/cm2 at Vd = 5 V. Overview potential of the fabricated device in display application is also presented. This preliminary work does open-up a new direction in VOFET fabrication and their application.  相似文献   

17.
The paper reviews the recent year publications concerning organic field-effect transistors (OFETs). A lot of works have been performed to help understanding the structural and electrical properties of materials used to construct OFETs. It has been established that in partially ordered systems, the charge transport mechanism is thermally activated and field-assisted hopping transport and the hopping transport between disorder-induced localized states dominate over intrinsic polaronic hopping transport seen in organic single crystals. Many research attempts have been carried out on the design of air-stable organic semiconductors with a solution process which is capable of producing OFETs with excellent properties and good stability when subjected to multiple testing cycles and under continuous electrical bias. Recent experiments have demonstrated ambipolar channel conduction and light emission in conjugated polymer FETs. These achievements are the basis for construction of OLED based displays driven by active matrix consisting of OFETs.  相似文献   

18.
For future device applications, fabrication of the metal nano-patterns on various substrates, such as Si wafer, non-planar glass lens and flexible plastic films become important. Among various nano-patterning technologies, nano-transfer print method is one of the simplest techniques to fabricate metal nano-patterns. In nano-transfer printing process, thin Au layer is deposited on flexible PDMS mold, containing surface protrusion patterns, and the Au layer is transferred from PDMS mold to various substrates due to the difference of bonding strength of Au layer to PDMS mold and to the substrate. For effective transfer of Au layer, self-assembled monolayer, which has strong bonding to Au, is deposited on the substrate as a glue layer.In this study, complicated SAM layer coating process was replaced to simple UV/ozone treatment, which can activates the surface and form the -OH radicals. Using simple UV/ozone treatments on both Au and substrate, Au nano-pattern can be successfully transferred to as large as 6 in. diameter Si wafer, without SAM coating process. High fidelity transfer of Au nano-patterns to non-planar glass lens and flexible PET film was also demonstrated.  相似文献   

19.
The class of sodium salts of sulphonated metal phthalocyanines (MePCS x , S = SO3Na, x=1–4) was investigated as a p-type channel component in organic field-effect transistors (OFETs). The solubility of these materials appears to be enhanced compared to their non-sulphonated counterparts (MePCs). We fabricated transistors based on MePCS x varying the central metal atom (Me = Ni, Co, Zn, Al) and we evaluated the dependence of transistor performance on the nature of the central atom and the degree of sulphonation. The best results were obtained in the case of Ni and low sulphur content. In this case the mobility value is μ=1.08 cm2 V−1 s−1 and the on/off current ratio ∼103. The degree of sulphonation affects the electric field inside the active film in a way analogous to the case of polyelectrolyte-gated OFETs. The Na+ counter ions present in the channel contribute to the device characteristics but their concentration should be controlled in order to optimize device performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号