首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 468 毫秒
1.
实验在表面蒸镀了金属(Cu,Au)薄膜的尖晶石(MgAl2O4)样品中注入惰性气体离子(Ar,He),随后对注入样品进行了退火处理.在紫外可见光谱上观察到了由于金属纳米颗粒存在引起的较强的表面等离子体共振吸收峰,提供了材料中金属纳米颗粒形成的证据.采用这种方法在材料中引入金属纳米颗粒,发现影响金属纳米颗粒形成的因素除了退火温度外,金属薄膜厚度的影响不可忽略. 关键词: 金属纳米颗粒 离子注入 惰性气体离子 紫外可见光谱  相似文献   

2.
利用傅立叶变换红外光谱仪对注He尖晶石样品随退火温变化而引起光吸收性能的变化进行了研究。 发现尖晶石样品在626.4 cm-1附近的吸收峰随注入剂量的增加向小波数方向移动, 而在随后退火过程该吸收峰随退火温度的增加而向大波数方向回复。 该吸收峰的回复行为依赖于注入剂量和退火温度。 认为在626.4 cm-1附近吸收峰随注入剂量和退火温度的这种变化与尖晶石中He的俘获以及释放有关。 The infrared absorption behavior of helium implanted spinel with annealing temperature was studied by Fourier transformed infrared (FTIR) spectroscopy. It was found that the absorbance peak at 626.4 cm-1 shifted to smaller wave numbers with the increase of implantation fluence, while on subsequent annealing the absorbance peak shifted back to larger wave numbers with the increase of annealing temperature. The shift of the peak at 626.4 cm-1 with He implantation/annealing is considered to be related with the trapping and release of helium atoms in lattice sites in the spinel crystal.  相似文献   

3.
One-step precipitation of Ag nanoparticles in Ag+-doped silicate glasses was achieved through a focused picosecond laser with a high repetition rate. Absorption spectra and transmission electron microscopy(TEM) confirmed that metallic Ag nanoparticles were precipitated within glass samples in the laser-written domain. The surface plasmon absorbance fits well with the experimental absorption spectrum. The nonlinear absorption coefficient β is determined to be 2.47 × 10-14 m/W by fitting the open aperture Z-scan curve, which originated from the intraband transition in the s-p Ag band. The formation mechanism of Ag-glass nanocomposites is discussed as well.  相似文献   

4.
完成了不同注量或温度下100 keV 的He 离子注入高纯钨的实验,并利用纳米压痕技术测量了材料的微观力学性能。所有注入样品的纳米硬度值都高于未注入样品的纳米硬度值。对于室温注入样品,随着注量的增加,样品抗弹性变形能力下降;当注量不高于5x1017 ions/cm2 时,钨的纳米硬度峰值随着注量的增加而增加;注量为1x1018 ions/cm2 的钨样品的纳米硬度峰值反而降低。高温注入样品的抗弹性变形能力优于室温注入样品的抗弹性变形能力;随着注入温度的增加,样品的平均纳米硬度值和弹性模量略有下降。分析讨论了He 注入钨硬化和抗弹性形变能力降低的可能原因。Tungsten has been selected as divertor materials in fusion reactors because of its high thermal conductivity,high melting point, low expansion coefficient and high threshold energy for sputtering etc. The paper presents the hardening behaviour of high pure tungsten by 100 keV He+ with different fluences from 5x1016 ions/cm2 to 1x1018ions/cm2 at room temperature, and with fluence of 1x1018 ions/cm2 at higher temperatures (400, 600 and 800 °C). The microscopic mechanical properties of these samples were investigated by nano-indentation technology. The results show that all of the implanted samples harden obviously. The reason for hardening may be that defects of interstitial dislocation loops or dense helium bubbles etc induced by helium implantation obstacle the movement of dislocation. The peak nanohardness of the samples increased with the fluences increasing when the fluence is not more than 5x1017 ions/cm2, while the nano-hardness value of the implanted sample with the fluence of 1x1018 ions/cm2 decreases and the nano-hardness changes little in the region of 50 nm to 200 nm from surface. For all the implanted samples with 1x1018 ions/cm2 at higher temperatures, their nano-hardness values are similar, but show a trend of decrease with increasing temperature.The reason may be the decrease of the defects’ density during implantation at higher temperatures. In addition, the capability of resisting deformation for the implanted tungsten reduces with increasing fluence and increases a little at higher temperatures.  相似文献   

5.
直流磁控溅射沉积含He钛膜的研究   总被引:1,自引:0,他引:1  
研究了用He/Ar混合溅射气体的直流磁控溅射制备钛膜中,He的掺入现象.分析结果表明,大量的He原子(He/Ti原子比高达56%)被均匀地引入到Ti膜中,其He含量可由混合溅射气体的He分量精确控制.通过调节溅射参数,可实现样品中He的低损伤引入.研究还发现,溅射沉积的含氦Ti膜具有较高的He成泡剂量和高的固He能力,这可能是溅射沉积形成了纳米晶Ti膜所致.纳米晶Ti膜较粗晶材料具有很高浓度的He捕陷中心,使He泡密度增大而泡尺寸减小.随He引入量的增加,Ti膜的晶粒尺寸减小,He引起的晶体点阵参数和X射线衍射峰宽度增大,晶体的无序程度增加.Helium trapping in the Ti films deposited by DC magnetron sputtering with a He/Ar mixture was studied. He atoms with a surprisingly high concentration (He/Ti atomic ratio is as high as 56%)incorporate evenly in deposited film. The trapped amount of He can be controlled by the helium partial amount. The introduction of the helium with no extra damage(or very low damage) can be realized by choosing suitable deposition conditions. It was also found that because of the formation of nanophase Ti film a relative high He flux for bubble formation is needed and the amount of the retain He in sputtering Ti films is much higher than that in the coarse grain Ti films. The nanophase Ti film can accommodate larger concentration of trapped sites to He, which results in a high density and small size of the He bubbles. With the increasing He irradiation flux, the grain size of Ti film decreases and the lattice spacing and width of the X ray diffraction peak increase due to the He introduction, and the film tends to amorphous phase.  相似文献   

6.
A series of Au films with different nominal deposition thickness d were fabricated on ionic liquid surfaces by thermal evaporation at room temperature,taken as surface-enhanced Raman scattering(SERS) substrates.Au atoms deposited on the liquid surfaces can diffuse and aggregate randomly and eventually form films with ramified structure,which consist of nanoparticles(NPs).There are amounts of ultrasmall(~1 nm or smaller) nanogaps among the Au NPs,which can dramatically enhance Raman signal.Raman spectra of R6G were investigated with the assistance of the Au films.The results indicate that the Au films with higher thickness possess better SERS performance when 5.0 ≤d ≤30.0 nm.A random distribution model of Au NPs was used in the finite-difference time-domain method and the simulation results are in good agreement with the experimental findings.  相似文献   

7.
周小东  张少锋  周思华 《物理学报》2015,64(16):167301-167301
利用金属蒸发真空多弧离子源注入机, 将Au离子注入到高纯石英玻璃来制备镶嵌有Au 纳米颗粒的衬底材料, 随后将化学方法合成的CdTe量子点旋涂在玻璃衬底上制备了Au纳米颗粒和CdTe量子点复合体系. 通过对镶嵌有Au纳米颗粒的衬底进行热退火处理来控制Au纳米颗粒的生长和分布, 系统研究了Au纳米颗粒的局域表面等离子体共振对CdTe量子点光致发光性能的影响. 利用光学吸收谱、原子力显微镜、透射电子显微镜和光致发光谱对样品进行了表征和测试. 光致发光谱表明, Au纳米颗粒的局域表面等离子体对CdTe量子点的发光有增强效应也有猝灭效应. 深入分析了Au纳米颗粒和CdTe量子点之间的相互作用过程, 提出了关于Au-CdTe 纳米复合体系中CdTe 发光增强和猝灭的新机理. 该实验结果为利用金属纳米颗粒表面等离子体技术制备高发光性能的光电子器件提供了较好的参考.  相似文献   

8.
The nanostructured Au/AgxO/Ag sandwich multilayer films on quartz substrates are prepared by the magnetron sputtering method. The morphology, plasmon resonance and surface enhanced Raman scattering (SERS) activi- ties of the multilayer films are studied. The resonant absorption wavelength of localized surface plasmon is tuned in a wide range from 618nm to 993nm by controlling the density of nanoparticles of Au and Ag. The SERS activity of the Au/AgxO/Ag multilayer films are enhanced over -10 times compared with those of bare Ag and bare Au films. These properties may find a potential application in biosensor and bioimaging.  相似文献   

9.
Composite materials based on plasmonic nanoparticles allow building metamaterials with very large effective permittivity (positive or negative). Moreover, if clustered or combined with other nanoparticles, it is also possible to generate effective magnetic permeability (positive or negative), and an ad-hoc design would result in the generation of double negative materials, and therefore backward wave propagation. In this work, the optical properties such as the effective permittivity, permeability and refractive index of Au-ZnS and Au-ZnO nanocomposites in a broad frequency range are studied. The enhancement is attributed to energy transfer from ZnS or ZnO to Au followed by a large local electromagnetic field on or near the surface of the Au nanoparticles. Local surface plasmon resonance could be the key" reason for this enhancement. The surface plasmon, in response to changes in the refractive index of the local environment, also depends on the type of metal through the bulk plasma wavelength and the nano-particle compositions and geometry.  相似文献   

10.
Arrays of noble metal nanoparticles show potential applications in (bio-)sensing, optical storage, surface-enhanced spectroscopy, and waveguides. For all such potential devices, controlling the size, morphology, and interparticle spacing of the nanoparticles is very important. Here, we combine seed-mediated growth with nanosphere lithography to study the controllable growth of gold nanoparticles (Au NPs), in which the self-assembly monolayer of polystyrene (PS) on a silicon surface is used to guide the modification of alkanesilanes and the subsequent adsorption of gold seeds; seed-mediated growth is applied to controlling the morphology and size of Au NPs. The size of adsorption region (determining the number of adsorbed gold seeds) is controlled by etching PS microspheres with oxygen plasma or annealing PS microspheres at the glass transition temperature. The size and morphology of the Au NPs are controlled by changing growth conditions. In such a way, we have achieved the dual control of the obtained Au NPs. Preliminary results show that this strategy holds a great promise. This approach can also be extended to a wide range of materials and substrates.  相似文献   

11.
A continuous aerosol process has been studied for producing nanoparticles of oxides that were decorated with smaller metallic nanoparticles and are free of organic stabilizers. To produce the oxide carrier nanoparticles, an aerosol of 3–6 μm oxide particles was ablated using a pulsed excimer laser. The resulting oxide nanoparticle aerosol was then mixed with 1.5–2.0 μm metallic particles and this mixed aerosol was exposed to the laser for a second time. The metallic micron-sized particles were ablated during this second exposure, and the resulting nanoparticles deposited on the surface of the oxide nanoparticles producing an aerosol of 10–60 nm oxide nanoparticles that were decorated with smaller 1–5 nm metallic nanoparticles. The metal and oxide nanoparticle sizes were varied by changing the laser fluence and gas type in the aerosol. The flexibility of this approach was demonstrated by producing metal-decorated oxide nanoparticles using two oxides, SiO2 and TiO2, and two metals, Au and Ag.  相似文献   

12.
The comparison between two different approaches based on the use of the laser ablation in medium to synthetise gold nanoparticles is presented and discussed. Deionised water as well as a graphene oxide (GO) suspension in deionised water have been employed as solution to produce gold nanoparticles by laser ablation. In the former case, the nanoparticles assembly has been stabilised by using surfactants, but in the latter case to avoid undesired effects the use of chemicals was not necessary and Au reduced graphene oxide (Au-rGO) nanocomposites have been obtained. The structure, size and composition of the gold nanoparticles and of the Au–rGO nanocomposites have been monitored by UV–Vis–NIR absorption spectroscopy and Raman spectroscopy, the transmission and scanning electron microscopies and the X-ray energy-dispersive spectroscopy. The presented methodology of Au rGO nanocomposites preparation could represent a green alternative on the production of metallic nanoparticles in biocompatible environment.  相似文献   

13.
An efficient biological route to production of gold nanoparticles which allows the nanoparticles to be easily recovered remains elusive. Live cells of the green microalga Chlorella vulgaris were incubated with a solution of gold chloride and harvested by centrifugation. Nanoparticles inside intact cells were identified by transmission electron microscopy and confirmed to be metallic gold by synchrotron based X-ray powder diffraction and X-ray absorption spectroscopy. These intracellular gold nanoparticles were 40–60 nm in diameter. At a concentration of 1.4% Au in the alga, a better than 97% recovery of the gold from solution was achieved. A maximum of 4.2% Au in the alga was obtained. Exposure of C. vulgaris to solutions containing dissolved salts of palladium, ruthenium, and rhodium also resulted in the production of the corresponding nanoparticles within the cells. These were surmised to be also metallic, but were produced at a much lower intracellular concentration than achieved with gold. Iridium was apparently toxic to the alga. No nanoparticles were observed using platinum solutions. C. vulgaris provides a possible route to large scale production of gold nanoparticles.  相似文献   

14.
Monodisperse silica nanoparticles were synthesised by the well-known Stober protocol, then dispersed in acetonitrile (ACN) and subsequently added to a bisacetonitrile gold(I) coordination complex ([Au(MeCN)2]+) in ACN. The silica hydroxyl groups were deprotonated in the presence of ACN, generating a formal negative charge on the siloxy groups. This allowed the [Au(MeCN)2]+ complex to undergo ligand exchange with the silica nanoparticles and form a surface coordination complex with reduction to metallic gold (Au0) proceeding by an inner sphere mechanism. The residual [Au(MeCN)2]+ complex was allowed to react with water, disproportionating into Au0 and Au(III), respectively, with the Au0 adding to the reduced gold already bound on the silica surface. The so-formed metallic gold seed surface was found to be suitable for the conventional reduction of Au(III) to Au0 by ascorbic acid (ASC). This process generated a thin and uniform gold coating on the silica nanoparticles. The silica NPs batches synthesised were in a size range from 45 to 460 nm. Of these silica NP batches, the size range from 400 to 480 nm were used for the gold-coating experiments.  相似文献   

15.
The surface enhanced fluorescence effect of acridine orange fluorophore in the proximity of Au nanoparticles has been investigated experimentally in the system of aqueous solution.Significant enhancement of the fluorescence intensity was observed when the system was excited with 532 nm or 442 nm CW lasers.The influence of the distances between neighboring Au particles as well as that between the fluorophore molecules and the Au surface were explored experimentally.The results demonstrated that a compact distribution of metallic particles was able to produce stronger fluorescence enhancement.Proper separation between the fluorophore molecules and the metal surface was favorable for a better enhancement.  相似文献   

16.
纳米Pt-Au合金修饰电极对鲁米诺电化学发光的增敏研究   总被引:2,自引:0,他引:2  
用化学还原法制备了不同比例及不同粒径的纳米Au-Pt合金,并用UV-Vis、TEM、激光粒径、XRD等方法进行了表征,确认所合成物质确系双金属合金纳米粒子而非两种金属纳米粒子的混合物,通过改变合成方法和条件,可以得到一系列不同含量比和粒径,粒径范围在4.025~92.33 nm之间。采用电化学沉积法可将所制备合金修饰到铂盘电极上,在碱性介质(pH 12)中,随着合金比例的改变和合金粒径的减小,鲁米诺的电化学发光强度显著增强,当合金中Pt∶Au=6∶1,粒子粒径为最小时,所获得修饰电极上鲁米诺的电化学发光强度较裸电极增强近1个数量级。  相似文献   

17.
Polymer matrix nanocomposites filled with metallic and alloy nanoparticles add functionality in various applications such as optical devices and in the energy sector. However, matrix coupling agents or nanoparticle ligands may be unwanted additives, potentially inhibiting the resulting nanocomposite to be processed by injection molding. The generation of stabilizer-free Au, Ag, and AuAg alloy nanoparticle acrylate composites is achieved by picosecond-pulsed laser ablation of the respective metal target in the liquid monomer. Complementary to laser ablation of the solid alloy, we have alloyed nanoparticles by post-irradiation of Au and Ag colloids in the liquid monomer. The optical properties of the colloidal nanoparticles are successfully transferred to the solid poly(methyl methacrylate) matrix and characterized by their plasmon resonance that can be easily tuned between 400 and 600 nm by laser alloying in the liquid monomer.  相似文献   

18.
The resonant multiple excitation of collective modes in metallic nanoparticles using ultrashort laser pulses leads to an enhanced multiphoton photoemission from the particles. This effect is here demonstrated for the surface-plasmon resonance of Au nanoparticles on graphite. The shape of the photoemission spectra is explained by multiphoton photo-assisted thermionic emission from the nanoparticles and resonant emission via the image-potential state on graphite. Tuning the photon energy between 1.7 eV and 3.2 eV allows the identification of an enhancement of the photoemission yield at 2.1±0.1-eV photon energy that is attributed to the resonant excitation of the surface plasmon in the Au nanoparticles. This identification of the surface-plasmon excitation in this energy range is also supported by electron energy loss spectroscopy. Received: 8 August 2001 / Revised version: 13 September 2001 / Published online: 10 October 2001  相似文献   

19.
New organometallic salts were synthesized in aqueous solution and were used as precursors for the functionalization of carbon nanotubes (CNT) by metallic nanoparticles. The precursors were obtained by reaction between HAuCl4, (NH4)2PtCl6, (NH4)2PdCl6, or (NH4)3RhCl6 with cetyltrimethylammonium bromide (CTAB). The as-obtained (CTA) n Me x Cl y salts (with Me?=?Au, Pt, Pd, Rh) were characterized by Fourier-transform infra-red (FTIR) spectroscopy, 1H nuclear magnetic resonance (NMR) spectroscopy, and thermogravimetric analysis. These precursors were then used to synthesize metallic nanoparticles of Au, Pt, Pd, and Rh over multiwalled carbon nanotubes (MWCNT). Characterization by scanning transmission electron microscopy (STEM) and thermogravimetric analysis under air reveals that the CNT-supported catalysts exhibit high loading and good dispersion of the metallic nanoparticles with small average particle sizes. The present preparation procedure therefore allows obtaining high densities of small metallic nanoparticles at the surface of MWCNT.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号