首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Crystallization of glass/Aluminum (50, 100, 200 nm) /hydrogenated amorphous silicon (a-Si:H) (50, 100, 200 nm) samples by Aluminum-induced crystallization (AIC) is investigated in this article. After annealing and wet etching, we found that the continuity of the polycrystalline silicon (poly-Si) thin films was strongly dependent on the double layer thicknesses. Increasing the a-Si:H/Al layer thickness ratio would improve the film microcosmic continuity. However, too thick Si layer might cause convex or peeling off during annealing. Scanning electron microscopy (SEM) and Energy Dispersive X-ray spectroscopy (EDX) are introduced to analyze the process of the peeling off. When the thickness ratio of a-Si:H/Al layer is around 1 to 1.5 and a-Si:H layer is less than 200 nm, the poly-Si film has a good continuity. Hall measurements are introduced to determine the electrical properties. Raman spectroscopy and X-ray diffraction (XRD) results show that the poly-Si film is completely crystallized and has a preferential (111) orientation.  相似文献   

2.
Polycrystalline silicon (poly‐Si) films were fabricated by aluminum (Al)‐induced crystallization of Si‐rich oxide (SiOx) films. The fabrication was achieved by thermal annealing of SiOx /Al bilayers below the eutectic temperature of the Al–Si alloy. The poly‐Si film resulting from SiO1.45 exhibited good crystallinity with highly preferential (111) orientation, as deduced from Raman scattering, X‐ray diffraction, and transmission electron microscopy measurements. The poly‐Si film is probably formed by the Al‐induced layer exchange mechanism, which is mediated by Al oxide.  相似文献   

3.
Amorphous silicon (a-Si) and hydrogenated amorphous silicon (a-Si:H) films were deposited by DC magnetron sputtering technique with argon and hydrogen plasma mixture on Al deposited by thermal evaporation on glass substrates. The a-Si/Al and a-Si:H/Al thin films were annealed at different temperatures ranging from 250 to 550 °C during 4 h in vacuum-sealed bulb. The effects of annealing temperature on optical, structural and morphological properties of as-grown as well as the vacuum-annealed a-Si/Al and a-Si:H/Al thin films are presented in this contribution. The averaged transmittance of a-Si:H/Al film increases upon increasing the annealing temperature. XRD measurements clearly evidence that crystallization is initiated at 450 °C. The number and intensity of diffraction peaks appearing in the diffraction patterns are more important in a-Si:H/Al than that in a-Si/Al layers. Results show that a-Si:H films deposited on Al/glass crystallize above 450 °C and present better crystallization than the a-Si layers. The presence of hydrogen induces an improvement of structural properties of poly-Si prepared by aluminium-induced crystallization (AIC).  相似文献   

4.
Aluminium-induced crystallization of amorphous silicon (a-Si) in Al/Si and Si/Al bilayers was studied upon annealing at 250 °C by X-ray diffraction and Auger electron spectroscopy. The Al/a-Si bilayers and a-Si/Al bilayers were prepared by sputter deposition on single-crystal silicon wafers with a silicon-oxide film on top. During the isothermal annealing a layer-exchange process occurred in both types of bilayers. A continuous polycrystalline silicon (poly-Si) film was formed within, and thereby gradually replacing, the initial Al metal layer. The sublayer sequence in the original bilayer influenced the speed of the poly-Si formation and the layer-exchange process. After annealing, the Al fiber texture in the as-deposited bilayers had become stronger, the Al crystallites had grown laterally, and the macrostress in the Al layer had been released. The amorphous Si layer had crystallized into an aggregate of nanocrystals with {111} planes parallel to the surface, with a crystallite size of about 15–25 nm. An extensive analysis of the Gibbs energy change due to annealing showed that the layer exchange may be promoted by the release of elastic energy and grain growth for the Al phase. PACS 05.70.Jk; 61.43.Dq; 68.35.Rh; 61.72.Cc; 68.55.Jk  相似文献   

5.
It is reported that the direct contact between Al and amorphous silicon (a-Si) enhances the crystallization of a-Si films. But the polycrystalline silicon (poly-Si) films crystallized by the direct contact of Al metal film suffer the problems of rough surface. In our study, we utilized the AlCl3 vapor during the a-Si films deposition instead of Al metal film to enhance crystallization. X-ray diffraction (XRD) shows that the AlCl3 vapor so successfully enhanced the crystallization of a-Si films that the crystallization was completed in 5 h at 540 °C. And the orientation of the poly-Si film deposited with AlCl3 vapor is much more random than that of annealed with Al metal under layer. But the average grain size is much larger than that. Moreover, the surface of the AlCl3-induced crystallized poly-Si film was much smoother than that of the Al-induced poly-Si film. The Al and Cl incorporation into the poly-Si film was confirmed using X-ray photoelectron spectroscopy (XPS) and found that the quantity of Al and Cl incorporated into the Si film was below the detection limit of XPS.  相似文献   

6.
7.
Microwave heating was utilized for low-temperature crystallization of amorphous Si (a-Si) films. Microwave heating lowered the annealing temperature and reduced the annealing time. By microwave heating the hydrogen in the amorphous films was diffused out long before the nucleation of polycrystalline Si (poly-Si). The combination of NiCl2 coating on a-Si and microwave heating greatly reduced crystallization temperature. The combination of metal-induced crystallization and microwave-induced crystallization might be a useful technique to develop high-quality poly-Si films at low temperature.  相似文献   

8.
The self-organized growth of crystalline silicon nanodots and their structural characteristics are investigated. For the nanodot synthesis, thin amorphous silicon (a-Si) layers with different thicknesses have been deposited onto the ultrathin (2 nm) oxidized (111) surface of Si wafers by electron beam evaporation under ultrahigh vacuum conditions. The solid phase crystallization of the initial layer is induced by a subsequent in situ annealing step at 700 °C, which leads to the dewetting of the initial a-Si layer. This process results in the self-organized formation of highly crystalline Si nanodot islands. Scanning electron microscopy confirms that size, shape, and planar distribution of the nanodots depend on the thickness of the initial a-Si layer. Cross-sectional investigations reveal a single-crystalline structure of the nanodots. This characteristic is observed as long as the thickness of the initial a-Si layer remains under a certain threshold triggering coalescence. The underlying ultra-thin oxide is not structurally affected by the dewetting process. Furthermore, a method for the fabrication of close-packed stacks of nanodots is presented, in which each nanodot is covered by a 2 nm thick SiO2 shell. The chemical composition of these ensembles exhibits an abrupt Si/SiO2 interface with a low amount of suboxides. A minority charge carrier lifetime of 18 µs inside of the nanodots is determined.  相似文献   

9.
本文采用磁控溅射法, 衬底温度500 ℃下在硅衬底上分别制备具有Ge填埋层的a-Si/Ge 薄膜和a-Si薄膜, 并进行后续退火, 采用Raman光谱、X射线衍射、原子力显微镜及场发射扫描电镜等对所制薄膜样品进行结构表征. 结果表明, Ge有诱导非晶硅晶化的作用, 并得出以下重要结论: 衬底温度为500 ℃时生长的a-Si/Ge薄膜, 经600 ℃退火5 h Ge诱导非晶硅薄膜的晶化率为44%, 在相同的退火时间下退火温度提高到700 ℃, 晶化率达54%. 相同条件下, 无Ge填埋层的a-Si薄膜经800 ℃退火5 h薄膜实现晶化, 晶化率为46%. 通过Ge填埋层诱导晶化可使在相同的条件下生长的非晶硅晶薄膜的晶化温度降低约200 ℃. Ge诱导晶化多晶Si薄膜在Si(200)方向具有高度择优取向, 且在此方向对应的晶粒尺寸约为76 nm. 通过Ge诱导晶化制备多晶Si薄膜有望成为制备高质量多晶Si薄膜的一条有效途径.  相似文献   

10.
Epitaxial ytterbium silicide thin films were grown on (111)Si by ultrahigh vacuum deposition and subsequent thermal annealing. The epitaxial YbSi(2-x) thin films consist of various kinds of defects such as vacancies, stacking faults, and pinholes. The vacancies were ordered so as to relax the compressive stress in Si sublattice of YbSi(2-x) thin films. The vacancy ordering structure is of an out-of-step structure with higher vacancy concentration after higher temperature annealing so that the compressive stress was further relaxed. A high density of stacking faults was present in the epitaxial YbSi(2-x) thin films. The stacking faults were annihilated by high temperature annealing. Pinholes also formed in the epitaxial YbSi(2-x) thin films and could be avoided by appropriate fabrication process. The epitaxial YbSi(2-x) thin films were thermally stable up to 1000 degrees C.  相似文献   

11.
Aluminium-induced crystallization of amorphous silicon (a-Si) in Al/a-Si and a-Si/Al bilayers was studied upon annealing at low temperatures between 165 and 250 °C, by X-ray diffraction (XRD) and Auger electron spectroscopy (AES). Upon annealing the inward diffusion of Si along grain boundaries in Al takes place, followed by crystallization of this diffused Si. Continuous annealing leads to (more or less) layer exchange in both types of bilayers. The change in bulk energy of the Al phase (release of macrostress and microstrain, increase of grain size) promotes the occurrence of layer exchange, whereas changes in surface and interface energies counteract the layer exchange.  相似文献   

12.
多晶硅在光电子器件领域具有较为重要的用途。利用磁控溅射镀膜系统,通过共溅射技术在玻璃衬底上制备了非晶硅铝(α-Si/Al)复合膜,将Al原子团包覆在α-Si基质中,膜中的Al含量可通过Al和Si的溅射功率比来调节。复合膜于N2气氛中进行350 ℃,10 min快速退火处理,制备出了多晶硅薄膜。利用X射线衍射仪、拉曼光谱仪和紫外-可见光-近红外分光光度计对多晶硅薄膜的性能进行表征,研究了Al含量对多晶硅薄膜性能的影响。结果表明:共溅射法制备的α-Si/Al复合膜在低温光热退火下晶化为晶粒分布均匀的多晶硅薄膜;随着膜中Al含量逐渐增加,多晶硅薄膜的晶化率、晶粒尺寸逐渐增加,带隙则逐渐降低;Al/Si溅射功率比为0.1时可获得纳米晶硅薄膜,Al/Si溅射功率比为0.3时得到晶化率较高的多晶硅薄膜,通过Al含量的调节可实现多晶硅薄膜的晶化率、晶粒尺寸及带隙的可控。  相似文献   

13.
唐正霞  沈鸿烈  江丰  方茹  鲁林峰  黄海宾  蔡红 《物理学报》2010,59(12):8770-8775
为了缩短铝诱导法制备大晶粒多晶硅薄膜的退火时间,用射频磁控溅射法在玻璃衬底上沉积了a-Si/SiO2/Al叠层膜,并用两种方法进行变温退火.分析了变温退火工艺对铝诱导晶化过程的影响,着重讨论了退火过程中温度由低温升到高温时不形成小晶粒的机理和条件.研究表明,当退火温度升高时,是否形成小晶粒取决于晶粒半径、耗尽层厚度和相邻晶粒间距三者之间的关系.  相似文献   

14.
Scanning photoelectron spectromicroscopy (SPESM) has been used to study nickel metal induced lateral crystallization (Ni-MILC) of amorphous silicon (a-Si) thin films, produced by in situ annealing of vacuum deposited Ni patterned films on a-Si. The spatial variations in the chemical composition of the Ni-MILC of a-Si were directly imaged. High-resolution photoemission spectra of both Si 2p and Ni 3p core levels and valence band were used to evaluate morphological changes and chemical interactions. Our direct spectromicroscopic characterization clearly shows that the Ni-MILC process in UHV leads to the lower crystallization temperature and a faster crystallization speed of a-Si, and a poly-Si film with high-crystallinity can be obtained. A unified mechanism for the enhanced growth rate of the high-crystallinity poly-Si film produced by Ni-MILC in UHV is proposed.  相似文献   

15.
铝诱导非晶硅薄膜的场致低温快速晶化及其结构表征   总被引:15,自引:2,他引:13       下载免费PDF全文
铝诱导非晶硅薄膜晶化可以降低退火温度、缩短退火时间,是制备多晶硅薄膜的一种重要方法.在此基础上,通过在退火过程中加入电场加速了界面处硅、铝原子间的互扩散,实现了非晶硅薄膜的快速低温晶化.实验结果表明,外加电场,退火温度为400℃,退火时间为60min时,薄膜的晶化率大于60%;退火温度为450℃退火时间为30min时,薄膜已经呈现明显的晶化现象;退火温度为500℃退火时间为15min时,薄膜的x射线多晶峰强度与非晶峰强度之比为未加电场的3—4倍. 关键词: 非晶硅薄膜 多晶硅薄膜 外加电场  相似文献   

16.
Thin transparent (for transmission electron microscopy, TEM) self-supported Si(001) films are irradiated on the (110) end face by low-energy (E=17 keV) He+ ions at doses ranging from 5×1016 to 4.5×1017 cm−2 at room temperature. The TEM study of the irradiated Si films along the ion range shows that an a-Si layer forms in the most heavily damaged region and helium pores (bubbles) with a density of up to 3×1017 cm−3 and 2–5 nm in diameter nucleate and grow across the entire width of this layer. The growth of nanopores in the a-Si layer is accompanied by their linear ordering into chains oriented along the ion tracks. The absence of pores in the region that remains crystalline and has the maximal concentration of implanted helium is explained by the desorption of helium atoms from the thin film during the irradiation. After annealing at 600°C, the volume of immobile pores in the remaining a-Si layer increases owing to the capture of helium atoms from the amorphous matrix. Solid solution is shown to be the prevalent state of the helium implanted into the amorphous silicon. Linear features with a diameter close to 1 nm and density of about 107 cm−1 discovered in the helium-doped a-Si layer are identified as low-energy He+ ion tracks.  相似文献   

17.
Thin film silicon solar cells on low cost foreign substrates could be attractive for highly efficient and low cost production of photovoltaic electricity. An attempt has been made to synthesise high-quality continuous polycrystalline silicon (pc-Si) layers on flexible metallic substrates using aluminium induced crystallization (AIC) for the first time. Amorphous silicon films deposited by ECR-PECVD were crystallized on diffusion barrier coated metallic substrates at lower temperatures (<577°C). The crystallization was studied using Raman as well as UV reflectance spectroscopy. The as-grown AIC pc-Si films were found to be continuous and densely packed without amorphous phase. The migration of impurities from the substrate to the pc-Si films and the conformability of the barrier layer with the substrate and pc-Si films were studied systematically in terms of chemical and stress level analysis, which are the important aspects to be considered when metallic foils are used as substrates. It was observed that the barrier layer also serves as a buffer layer to minimise the stress level enormously in the AIC grown pc-Si layer, though the supporting material has a thermal expansion coefficient of higher order at higher annealing temperatures. The present investigation proves the possibility to grow better-quality polycrystalline silicon films on flexible metallic foils and further demonstrates the steps that need to be considered to improve the quality of AIC pc-Si films as well as the strength of the barrier layer.  相似文献   

18.
Amorphous silicon (a-Si) films were prepared by sputtering method with polycrystalline and monocrystalline silicon targets. Structural, optical and electrical properties of the a-Si films have been systematically studied. The deposition power is from 100 to 200 W. Compared with the a-Si films deposited by using monocrystalline silicon target, the a-Si films prepared with polycrystalline silicon target exhibit better growth property, similar optical band gap, and own the highest mobility of 1.658 cm2/Vs, which make a good match with the optimal window of optical band gap for a-Si solar cells. The results indicated that the polycrystalline silicon target is superior to the monocrystalline silicon target when used to prepare a-Si films as the intrinsic layer in a-Si solar cells.  相似文献   

19.
Cobalt (Co)-induced crystalline silicon (Si) growth was investigated. The Co catalyst reacted to dc magnetron sputtered Si at 600 °C forming a Co silicide layer. The polycrystalline Si (poly-Si) was epitaxially grown above the Co silicide template, which has a small lattice misfit to Si. Annealing followed to improve the Si crystallinity. X-ray diffraction was performed to trace Co silicide phase formation and transition. The Co-rich silicide phase transitioned to CoSi2 by annealing. The crystallinity of Si films was identified using reflection absorption Fourier transform-infrared spectroscopy, which detected unique peaks at 689 and 566 cm−1 after the annealing process. The thin poly-Si film was used to fabricate a Schottky diode to prove the electronic quality. A good quality Si thin film was achieved by the metal-induced Si growth.  相似文献   

20.
吴晨阳  谷锦华  冯亚阳  薛源  卢景霄 《物理学报》2012,61(15):157803-157803
本文采用射频等离子体增强化学气相沉积(rf-PECVD)技术在单晶硅衬底上沉积了两个系列的硅薄膜. 通过对样品进行固定角度椭圆偏振测试, 结果表明第一个系列硅薄膜为非晶硅, 形成了突变的a-Si:H/c-Si异质结构, 此结构在HIT电池中有利于形成好的界面特性, 对于非晶硅薄膜采用通常的Tauc-Lorentz摇摆模型(Genosc)拟合结果很好; 第二个系列硅薄膜为外延硅, 对于外延硅薄膜, 随着膜厚增加晶化率降低, 当外延硅薄膜厚度为46 nm时开始非晶硅生长. 对于外延硅通常采用EMA模型(即将硅薄膜体层看成由非晶硅和c-Si构成的混合层)拟合结果较好, 当硅薄膜中出现非晶硅生长时, 将体层分成混合层和非晶硅两层, 采用三层模型拟合结果很好. 本文证实了椭偏光谱分析采用不同的模型可对单晶硅衬底上不同结构的硅薄膜进行有效表征.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号