首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Structural investigations of silicon nanostructures grown by self-organized island formation for photovoltaic applications
Authors:Maurizio Roczen  Martin Schade  Enno Malguth  Gordon Callsen  Thomas Barthel  Orman Gref  Jan A Töfflinger  Andreas Schöpke  Manfred Schmidt  Hartmut S Leipner  Florian Ruske  Matthew R Phillips  Axel Hoffmann  Lars Korte  Bernd Rech
Institution:1. Helmholtz-Zentrum Berlin, Institute for Silicon Photovoltaics, Kekuléstrasse 5, 12489, Berlin, Germany
2. Interdisziplin?res Zentrum für Materialwissenschaften, Martin-Luther-Universit?t Halle-Wittenberg, Heinrich-Damerow-Str. 4, 06120, Halle, Germany
3. Institut für Festk?rperphysik, Technische Universit?t Berlin, Hardenbergstrasse 36, 10623, Berlin, Germany
4. Department of Physics and Advanced Materials, University of Technology Sydney, PO Box 123, Broadway, NSW, 2007, Australia
Abstract:The self-organized growth of crystalline silicon nanodots and their structural characteristics are investigated. For the nanodot synthesis, thin amorphous silicon (a-Si) layers with different thicknesses have been deposited onto the ultrathin (2 nm) oxidized (111) surface of Si wafers by electron beam evaporation under ultrahigh vacuum conditions. The solid phase crystallization of the initial layer is induced by a subsequent in situ annealing step at 700 °C, which leads to the dewetting of the initial a-Si layer. This process results in the self-organized formation of highly crystalline Si nanodot islands. Scanning electron microscopy confirms that size, shape, and planar distribution of the nanodots depend on the thickness of the initial a-Si layer. Cross-sectional investigations reveal a single-crystalline structure of the nanodots. This characteristic is observed as long as the thickness of the initial a-Si layer remains under a certain threshold triggering coalescence. The underlying ultra-thin oxide is not structurally affected by the dewetting process. Furthermore, a method for the fabrication of close-packed stacks of nanodots is presented, in which each nanodot is covered by a 2 nm thick SiO2 shell. The chemical composition of these ensembles exhibits an abrupt Si/SiO2 interface with a low amount of suboxides. A minority charge carrier lifetime of 18 µs inside of the nanodots is determined.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号