首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The technology of zinc-diffusion to improve catastrophic optical damage (COD) threshold of compressively strained GaInP/A1GaInP quantum well laser diodes has been introduced. After zinc-diffusion, about 20-μm-long region at each facet of laser diode has been formed to serve as the window of the lasing light. As a result, the COD threshold has been significantly improved due to the enlargement of bandgap by the zinc-diffusion induced quantum well intermixing, compared with that of the conventional non-window structure. 40-mW continuous wave output power with the fundamental transverse mode has been realized under room temperature for the 3.5-μm-wide ridge waveguide diode. The operation current is 84 mA and the slope efficiency is 0.74 W/A at 40 mW. The lasing wavelength is 656 nm.  相似文献   

2.
为改善940 nm大功率InGaAs/GaAs半导体激光器输出特性,通过模拟计算了非对称波导层及限制层结构的光场分布,并参照模拟制作了非对称结构半导体激光器器件。采用低压金属有机物气相沉积(LP-MOCVD)生长技术,获得了低内吸收系数的高质量外延材料,通过实验数据计算得到激光器材料内吸收系数仅为0.44mm~(-1)。进而通过管芯工艺制作了条宽100μm、腔长2000μm的940 nm半导体激光器器件。25℃室温10 A直流连续(CW)测试镀膜后器件阈值电流251 mA,斜率效率1.22 W/A,最大输出功率达到9.6 W,最大光电转化效率超过70%。  相似文献   

3.
利用PICS3D计算得到InGaAs/GaAsP应变补偿量子阱的增益特性,得到量子阱的各项参数,再通过传输矩阵理论和TFCalc膜系设计软件分别仿真出上下分布式布拉格反射镜的白光反射谱.采用金属有机化合物气相沉积技术外延生长了垂直腔面发射激光器结构,之后通过干法刻蚀、湿法氧化以及金属电极等芯片技术制备得到8μm氧化孔径的VCSEL芯片.最终,测试得到其光电特性实现室温下阈值电流和斜效率分别为0.95 mA和0.96 W/A,在6 mA电流和2 V电压下输出功率达到4.75 mW,并测试了VCSEL的高温特性.  相似文献   

4.
本文将硅(Si)衬底上外延生长的氮化镓(GaN)基发光二极管(LED)薄膜剥离转移到新的硅基板和紫铜基板上,并获得了垂直结构的LED芯片,对其变温变电流电致发光(EL)特性进行了研究. 结果表明:当环境温度不变时,在13 K低温状态下铜基板芯片的EL波长始终大于硅基板芯片约6 nm,在300 K 状态下随着驱动电流的加大铜基板芯片的EL波长会由大于硅基板芯片3 nm左右而逐渐变为与硅基板芯片重合;当驱动电流不变时,环境温度由13 K升高到320 K,两种基板芯片的EL波长随温度升高呈现S形变化并且波谱逐渐趋于重合;在100 K以下温度时铜基板芯片的Droop效应比硅基板芯片明显,在100 K 以上温度时硅基板芯片的Droop效应比铜基板芯片明显. 可能是由于两种芯片的基板具有不同的热膨胀系数和热导率导致了其变温变电流的EL特性不同. 关键词: GaN 热膨胀系数 内量子效率 热导率  相似文献   

5.
808 nm InGaAsP-InP单量子阱激光器热特性研究   总被引:3,自引:2,他引:1  
从InGaAsP-InP单量子阱激光器结构分析入手,采用自行设计的热封闭系统对808 nm InGaAsP-InP单量子阱激光器热特性进行了研究.实验表明,在23-70℃的温度范围内,器件的功率由1.74 W降到0.51 W,斜率效率由1.08 W/A降到0.51 W/A.实验测得其特征温度T0为325 K.激射波长随温度的漂移dλ/dT为 0.44 nm/℃.其芯片的热阻为3.33℃/W.  相似文献   

6.
The optoelectronic integrated transmitter and receiver for 650 nm plastic optical fiber (POF) communication applications realized in 0.5 μm BCD (Biplor, CMOS and DMOS) process is first described in this paper. The 650 nm resonant cavity light emitting diode (RCLED) is used as light source. It is first proposed for optoelectronic integration of the transmitter by bonding RCLED to the driver chip. Temperature compensation technology is employed in the driver circuit to compensate for the modulation current. In the monolithic optoelectronic integrated receiver, large area multi-finger PIN photodetector (PD) that is compatible with standard IC process, transimpedance amplifier and post amplifier are presented. Measurement results show that the responsivity and capacitance of PD is 0.25 A/W and 5 pF, respectively. The sensitivity of receiver is −14.6 dBm at 180 Mb/s and BER is less than 10−9 for 650 nm input light by POF. A clear eye diagram is demonstrated for 180 Mb/s PRBS. These indicate that optoelectronic integrated chips can be employed in high-speed POF-based Fast Ethernet systems for broadband access network applications.  相似文献   

7.
铁电材料作为感光功能薄膜的红外器件研究近年来十分活跃,其良好的压电、铁电、热释电、光电及非线性光学特性以及能够与半导体工艺相集成等特点,在微电子和光电子技术领域有着广阔的应用前景。实验将铁电材料锆钛酸铅作为感光层与GaN基高电子迁移率晶体管(HEMT)相结合,成功地制备出了感光栅极GaN基HEMT器件,并在波长为365 nm的光照下进行探测,经大量实验测试后发现器件在该波段的光照下饱和电流达到28 mA,相比无光照时饱和电流提高12 mA。另外,通过合理改变器件结构尺寸,包括器件栅长以及栅漏间距,发现随着栅长的增大,器件的饱和输出电流依次减小,而栅漏间距的变化对阈值电压以及饱和电流的影响并不大。由此可知,改变器件结构参数可以达到提高器件性能的目的并且可以提高探测效率。  相似文献   

8.
Wavelength down‐converted white‐light sources excited by near ultraviolet light‐emitting diodes require specific phosphor properties in order to generate high‐quality white light (namely, light with good color rendition and stability of color coordinate). Simulation and experimental results are discussed, with particular emphasis on the spectral distribution property of red phosphor required to realize high values of luminous efficiency and color rendition. A peak wavelength of 610 nm and an FWHM of 80 nm for the spectral power distribution were proposed, and co‐doped phosphate materials were synthesized successfully. This can contribute to a white‐light source with a luminous efficiency of 45 lm/W and color rendering index greater than 90 at a color temperature of 5600 K and an operational current of 20 mA. (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

9.
In order to improve the characteristics of the general broad-waveguide 808-nm semiconductor laser diode (LD), we design a new type quantum well LD with an asymmetric cladding structure. The structure is grown by metal organic chemical vapor deposition (MOCVD). For the devices with 100-ttm-wide stripe and 1000-/zm-long cavity under continuous-wave (CW) operation condition, the typical threshold current is 190 mA, the slope efficiency is 1.31 W/A, the wall-plug efficiency reaches 63%, and the maximum output power reaches higher than 7 W. And the internal absorption value decreases to 1.5 cm^-1.  相似文献   

10.
We fabricated several near-infrared Si laser devices (wavelength ~1300 nm) showing continuous-wave oscillation at room temperature by using a phonon-assisted process induced by dressed photons. Their optical resonators were formed of ridge waveguides with a width of 10 μm and a thickness of 2 μm, with two cleaved facets, and the resonator lengths were 250–1000 μm. The oscillation threshold currents of these Si lasers were 50–60 mA. From near-field and far-field images of the optical radiation pattern, we observed the high directivity which is characteristic of a laser beam. Typical values of the threshold current density for laser oscillation, the ratio of powers in the TE polarization and TM polarization during oscillation, the optical output power at a current of 60 mA, and the external differential quantum efficiency were 1.1–2.0 kA/cm2, 8:1, 50 μW, and 1 %, respectively.  相似文献   

11.
The optical performance of a grating-coupled external Continuous tuning from 1391 nm to 1468 nm is realized at cavity laser based on InAs/InP quantum dots is investigated. an injection current of 1900 mA. With the injection current increasing to 2300 mA, the tuning is blue shifted to some extent to the range from 1383 nm to 1461 nm. By combining the effect of the injection current with the grating tuning, the total tuning bandwidth of the external cavity quantum-dot laser can reach up to 85 nm. The dependence of the threshold current on the tuning wavelength is also presented.  相似文献   

12.
Thin-film 850-nm vertical-cavity surface-emitting lasers (VCSELs) were improved in light output power by designing both the reflectivity of the distributed Bragg reflector on the light-emitting side and also the degree of de-tuning between the photoluminescence peak and the etalon wavelength. Thin-film VCSELs, which were fabricated on A1N substrates by a functional layer transfer technique, are attractive components for the hybrid integration of optoelectronic devices. Their maximum output power was 2.8 mW and their slope efficiency was 0.40 W/A for the 15μm diameter VCSEL devices that we studied. Uniform spontaneous emission over the entire mesa area, and a single transverse laser mode up to 1.3 times the threshold current were confirmed by observing the near-field images.  相似文献   

13.
The 810-nm InGaA1As/A1GaAs double quantum well (QW) semiconductor lasers with asymmetric waveguide structures, grown by molecular beam epitaxy, show high quantum efficiency and high-power conversion efficiency at continuous-wave (CW) power output. The threshold current density and slope efficiency of the device are 180 A/cm2 and 1.3 W/A, respectively. The internal loss and the internal quantum efficiency are 1.7 cm-1 and 93%, respectively. The 70% maximum power conversion efficiency is achieved with narrow far-field patterns.  相似文献   

14.
程成  赵志远 《光学学报》2012,32(9):914002-160
根据实验制备的钠硼铝硅酸盐PbSe量子点玻璃及其透射电子显微镜(TEM)图、吸收谱和发射谱,计算机数值模拟了以PbSe量子点作为激活增益介质的红外单模光纤激光。应用遗传算法,通过数值求解粒子数速率方程和激光谐振腔振荡方程,优化计算了量子点光纤激光器(QDFL)的最佳抽运波长、光纤长度、掺杂浓度及出射镜反射率。结果表明:饱和抽运功率为2 W,在1676nm激光波长处,QDFL最大输出功率可达1.36 W,抽运效率达68%。与通常的掺稀土离子(Yb3+、Er3+)的光纤激光器相比,QDFL具有抽运效率高、激励阈值低、掺杂密度可调、光纤饱和长度短等特点。由于量子点辐射波长的尺寸依赖特性,容易形成多波长激射或波长可调的新型激光器。  相似文献   

15.
提出了一种新型全方位反射铝镓铟磷(AlGaInP)薄膜发光二极管(LED)的结构和制作工艺,在这个结构里应用了低折射率的介质和高反射率的金属联合作为反光镜.用金锡合金(80Au20Sn,重量比)作为焊料把带有反光镜的AlGaInP LED外延片倒装键合到GaAs基板上(RS-LED),去掉外延片GaAs衬底,把被GaAS衬底吸收的光反射出去.通过与常规AlGaInP 吸收衬底LEDs(AS-LED)和带有DBR的AlGaInP 吸收衬底LEDs(AS-LED(DBR))电、光特性的比较,证明新型全方位反射AlGaInP薄膜LED结构能极大提高亮度和效率.正向电流20mA时,RS-LED的光输出功率和流明效率分别是AS-LED的3.2倍和2.2倍,是AS-LED(DBR)的2倍和1.5倍.RS-LED(20mA下峰值波长627nm)的轴向光强达到194.3mcd,是AS-LED(20mA下峰值波长624nm)轴向光强的2.8倍,是AS-LED(DBR)(20mA下峰值波长623nm)轴向光强的1.6倍. 关键词: 铝镓铟磷 薄膜发光管 全方位反射镜 发光强度  相似文献   

16.
We report a 1 018-nm ytterbium-doped double-clad fiber laser pumped by 970-nm diode. A pair of fiber Bragg gratings with reflectivities of 99.9% and 9% at a center wavelength of 1 018.9 nm are employed as cavity mirrors. The ytterbium-doped double-clad fiber is a 2.6-m-long Liekki fiber. Laser output power of 7.5 W at 1 018 nm is obtained under the pump power of 59.2 W. The overall slope efficiency of the fiber laser is about 16%. This low slope efficiency is mainly due to the incomplete absorption of the pump power.  相似文献   

17.
Green light-emitting diodes (LEDs) were fabricated employing a ZnCdSe/ZnSSe triple quantum-well (TQW) active region surrounded by ZnMgSSe cladding layers grown on an n-type (100) GaAs substrate by molecular beam epitaxy (MBE). A 3.5 mW pure green emission was observed for the surface-emitting LED device at a peak wavelength of 513.3 nm (2.415 eV) with a spectral half-width of 11.7 nm (55 meV) under a 20 mA (4.6 V) direct current at room temperature (25°C). These correspond to an external quantum efficiency of 7.2%, a power conversion efficiency of 3.8%, a luminous current efficiency of 66 lm/A, and a luminous efficiency of 14 lm/W.  相似文献   

18.
InGaN-based multiple quantum wells (MQWs) yellow light-emitting diodes (LEDs) were grown on Si substrate by metal organic vapor deposition. Blue MQWs were introduced as strain modulation layers for yellow MQWs. The LED chips emitted 72-mW yellow light with 566-nm dominant wavelength and 9.4 % external quantum efficiency (EQE) at 350 mA under room temperature, and it reached a peak EQE of 22.2 % at 0.7 mA. A comparison sample without strain modulation layers exhibited much weaker performance. The results reveal that long-wavelength emission of InGaN system is reliable if the strain of MQWs has been properly modulated.  相似文献   

19.
We formed a p?Cn homojunction by implanting nitrogen ions, serving as a p-type dopant, into an n-type ZnO crystal. A forward bias current was injected into the crystal while irradiating it with light, bringing about Joule heating which annealed the crystal and changed the spatial distribution of the N-dopant concentration. This activated the N-dopant, causing its concentration distribution to be modified in a self-organized manner so as to be suitable for generating dressed photons. A light-emitting diode fabricated by this dressed-photon assisted annealing method showed electroluminescence at room temperature. In a device fabricated by annealing under irradiation with 407 nm-wavelength light, at a forward bias current of 20 mA, the peak wavelength of the electroluminescence was 436 nm, the optical output power was 6.2 ??W, and the external quantum efficiency was 1.1×10?4. The emission spectral profile depended on transitions from intermediate phonon states.  相似文献   

20.
采用金属有机物化学气相淀积(MOCVD)方法生长了InGaAs/GaAs应变量子阱,通过优化生长条件和采用应变缓冲层结构获得量子阱,将该量子阱结构应用于1 054 nm激光器的制备。经测试该器件具有9 mA低阈值电流和0.4 W/A较高的单面斜率效率,在驱动电流为50 mA时测得该应变量子阱光谱半宽为1.6nm,发射波长为1 054 nm。实验表明:通过优化工艺条件和采用应变缓冲层等手段,改善了应变量子阱质量,该结果应用于1 054 nm激光器的制备,取得了较好的结果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号