首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
本文讨论问题 ut=Auxx+f(x,t,u), ux|x=0=0,ux|x=1=0, u|t=0=u0(x)。 的解的渐近性质,将参考文献[1]的L^2范数估计  相似文献   

2.
本文给出了max_min原理的一个非变分形式,证明了非线性两点边界值问题u″+g(t,u)=f(t),u(0)=u(2π)=0的解的一个存在性和唯一性定理·  相似文献   

3.
本文讨论一类不满足 Nagumo条件的微分方程边值问题-u"=λ2+|u'|β,u(0)=u(1)=0正解的存在唯一性问题,其中β>2为常数,λ>0为参数.证明了对每一β>2,存在λ=λ(β)∈(0,π),边值问题存在属于C1[0,1]正解当且仅当λ∈(λ,π),此时正解唯一,当λ=λ(β)时,边值问题存在正解。 u∈C1(0,1)∩C[0,1],u'(0)=∞,u'(1)=-∞,并证明lim λ(β)=π  相似文献   

4.
本文研究非线性薛定鄂方程的初始值和边界值问题 iu_t=u_(xx)-g|u|~(p-1)u。0<x,t<∞,这里 g> 0, p> 3; u(x,0)= h(x).假设 h(x)∈ H(IR~+), Q(t),R(t) E C(IR~+).对于二类不同的边界值(狄里克莱型u(0,t)=Q(t)和鲁宾型u_x(0,t)+au(0,t)=R(t);这里a是实数)本文证明古典解。 u∈ C~1(L~2)∩ L~2(H~2)的存在性,唯一性和全局性.  相似文献   

5.
本给出了max-min原理的一个非变分形式,证明了非线性两点边界值问题u″+g(t,u)=f(t),u(0)=u(2π)=0的解的一个存在性和唯一性定理。  相似文献   

6.
喻伟 《数学研究》1996,29(3):55-58
考虑非线性中立型微分差分方程[y(t)+P(t)g(y(t-τ)]′+Q(t)h(y(t-σ))=0(1)的非振动解的渐近性.若无特别申明,本文总假设A函数P(t),Q(t),g(u),h(u)皆为连续函数;BQ(t)>0;ug(u)>0,uh(u)>0(u≠0);Cg(u)=h(u)=0当且仅当u=0.  相似文献   

7.
设F为有限序列族,对a=(a1,a2,…,an)∈F,ai为整数且0≤ai≤si(整数),记s(a)={j|1≤j≤n,aj>0},s(F)={s(a)|a∈F},及A{1,2,…,n}时W(A)=Пi∈Asi.称F为贪婪t-相交,如对任何a,b∈F,至少有t个ai,bi>0,且W(A)≥W(({1,2,…,n}-A)+B)对任何A∈S(F)及BA(|B|=t-1)成立.本文得到当s1>s2>…>sn时的最大贪婪t-相交有限序列族.  相似文献   

8.
本文研究了下列一阶拟线性偏微分方程的广义Cauchy问题:u+λ(u)ux=0,u|Γ=φ(x),Γ:x=r(σ),t=s(σ).证明了该问题在一定条件下,于上半平面Ω={-∞<x<+∞,t≥0}上存在整体光滑解.  相似文献   

9.
边文明 《数学杂志》1997,17(2):189-194
本文利用Banach不动点定理和Schauder不动点定理研究如下算子方程解的稠密性:y=y0+LF(y)+LH(v)(其中,L、H为线性算子,F为非线性算子),然后,利用所得结论讨论Banach空间内的半线性系统:x'(t)+A(t)x(t)=f(t,x(t)+Bu(t)的近似可控性。  相似文献   

10.
徐中海 《数学研究》1999,32(2):179-183
研 究如下第一边值 问题u t = div(| Du m |p - 2 Dum ) + f (x ,u)u (x ,t) = 0u (x ,0) = u0  0      (x ,t) ∈ Q T = Ω× (0, T)(x ,t) ∈ Ω× (0, T)x ∈ Ω解的极限性质 (t → ∞),推 广了文献[1 ~ 7] 的结果  相似文献   

11.
Consider the following nonlinear singularly perturbed system of integral differential equations &\frac{\partial u}{\partial t}+f(u)+w\\ =&(\alpha-au)\int^{\infty}_0\xi(c)\left[\int_{\mathbb R}K(x-y) H\left(u\left(y,t-\frac1c|x-y|\right)-\theta\right){\rm d}y\right]{\rm d}c\\ &+(\beta-bu)\int^{\infty}_0\eta(\tau)\left[\int_{\mathbb R}W(x-y)H\big(u(y,t-\tau)-\Theta\big){\rm d}y\right]{\rm d}\tau,\\ &\frac{\partial w}{\partial t}=\varepsilon[g(u)-w], and the scalar integral differential equation &\frac{\partial u}{\partial t}+f(u)\\ =&(\alpha-a u)\int^{\infty}_0\xi(c)\left[\int_{\mathbb R}K(x-y) H\left(u\left(y,t-\frac1c|x-y|\right)-\theta\right){\rm d}y\right]{\rm d}c\\ &+(\beta-bu)\int^{\infty}_0\eta(\tau)\left[\int_{\mathbb R}W(x-y)H\big(u(y,t-\tau)-\Theta\big){\rm d}y\right]{\rm d}\tau. There exist standing wave solutions to the nonlinear system. Similarly, there exist standing wave solutions to the scalar equation. The author constructs Evans functions to establish stability of the standing wave solutions of the scalar equation and to establish bifurcations of the standing wave solutions of the nonlinear system.  相似文献   

12.
In this paper, solutions for two types of ultrametric kinetic equations of the form reaction-diffusion are obtained and properties of these solutions are investigated. General method to find the solution of equation of the form
$ \tfrac{\partial } {{\partial t}}f(x,t) = \int_{\mathbb{Q}_p } {W(|x - y|_p )(f(y,t) - f(x,t))dy + V(|x|_p )f(x,t),f(x,0) = \phi (|x|_p ),} $ \tfrac{\partial } {{\partial t}}f(x,t) = \int_{\mathbb{Q}_p } {W(|x - y|_p )(f(y,t) - f(x,t))dy + V(|x|_p )f(x,t),f(x,0) = \phi (|x|_p ),}   相似文献   

13.
This paper deals with the following IBV problem of nonlinear hyperbolic equations u_(tt)- sum from i, j=1 to n a_(jj)(u, Du)u_(x_ix_j)=b(u, Du), t>0, x∈Ω, u(O, x) =u~0(x), u_t(O, x) =u~1(v), x∈Ω, u(t, x)=O t>O, x∈()Ω,where Ωis the exterior domain of a compact set in R~n, and |a_(ij)(y)-δ_(ij)|= O(|y|~k), |b(y)|=O(|y|~(k+1)), near y=O. It is proved that under suitable assumptions on the smoothness,compatibility conditions and the shape of Ω, the above problem has a unique global smoothsolution for small initial data, in the case that k=1 add n≥7 or that k=2 and n≥4.Moreover, the solution ham some decay properties as t→ + ∞.  相似文献   

14.
The purpose of this article is to study the existence and uniqueness of global solution for the nonlinear hyperbolic-parabolic equation of Kirchhoff-Carrier type: $$ u_{tt} + \mu u_t - M\left (\int _{\Omega _t}|\nabla u|^2dx\right )\Delta u = 0\quad \hbox {in}\ \Omega _t\quad \hbox {and}\quad u|_{\Gamma _t} = \dot \gamma $$ where $ \Omega _t = \{x\in {\shadR}^2 | \ x = y\gamma (t), \ y\in \Omega \} $ with boundary o t , w is a positive constant and n ( t ) is a positive function such that lim t M X n ( t ) = + X . The real function M is such that $ M(r) \geq m_0 \gt 0 \forall r\in [0,\infty [ $ .  相似文献   

15.
朱起定 《计算数学》2002,24(1):77-82
1.引 言 设 是一个有界开域,具充分光滑的边界 且设 是 上的一族拟一致的三角剖分,用 表示定义在Th上的分片线性有限元空间,并置考虑模型问题 用 分别表示的有限元解及内插,那么有插值估计:(见[1])一般地,如u为问题(1.1)的解,我们有有限元逼近误差估计(见[3]) 命题1.设 并设 分别表示按定义的Green函数及其有限元逼近,那么有其中 C与 z,h无关.(参见[3]) 注意.如 且 ,那么至少存在一个点 ,使即x0是f的奇点,例如其中 为常数, ,显然如果。,如果故我们假定 本文将证明,误差与f的奇性…  相似文献   

16.
The author demonstrate that the two-point boundary value problem {p′(s)=f′(s)-λp^β(s)for s∈(0,1);β∈(0,1),p(0)=p(1)=0,p(s)>0 if s∈(0,1),has a solution(λ^-,p^-(s)),where |λ^-| is the smallest parameter,under the minimal stringent restrictions on f(s), by applying the shooting and regularization methods. In a classic paper, Kohmogorov et.al.studied in 1937 a problem which can be converted into a special case of the above problem. The author also use the solution(λ^-,p^-(s)) to construct a weak travelling wave front solution u(x,t)=y(ξ),ξ=x-Ct,C=λ^-N/(N+1),of the generalized diffusion equation with reaction δ/δx(k(u)|δu/δx|^n-1 δu/δx)-δu/δt=g(u),where N>0,k(s)>0 a.e.on(0,1),and f(a):=n+1/N∫0ag(t)k^1/N(t)dt is absolutely continuous ou[0,1],while y(ξ) is increasing and absolutely continuous on (-∞,+∞) and (k(y(ξ))|y′(ξ)|^N)′=g(y(ξ))-Cy′(ξ)a.e.on(-∞,+∞),y(-∞)=0,y(+∞)=1.  相似文献   

17.
The Chebyshev polynomials have good approximation properties which are not affected by boundary values. They have higher resolution near the boundary than in the interior and are suitable for problems in which the solution changes rapidly near the boundary. Also, they can be calculated by FFT. Thus they are used mostly for initial-boundary value problems for P.D.E.'s (see [1, 3-4, 6, 8-11]). Maday and Quarterom discussed the convergence of Legendre and Chebyshev spectral approximations to the steady Burgers equation. In this paper we consider Burgers-like equations.$$\begin{cases}∂_iu+F(u)_x-vu_{zx}=0, & -1≤x≤1, 0<t≤T \\ u (-1,t) =u (1,t) =0, & 0≤t≤T & (0.1)\\ u (x,0) =u_0(x), & -1≤x≤1\end{cases}$$ where $F\in C(R)$ and there exists a positive function $A\in C(R)$ and a constant $p>1$ such that $$|F(z+y)-F(z)|\leq A(z)(|y|+|y|^p).$$ We develop a Chebyshev spectral scheme and a pseudospectral scheme for solving (0.1) and establish their generalized stability and convergence.  相似文献   

18.
Consider the system with three-component integral equations u(x) = Rn |x y|α nw(y)rv(y)q dy,v(x) = Rn |x y|α nu(y)pw(y)rdy,w(x) = Rn |x y|α nv(y)q u(y)pdy,where 0 < α < n,n is a positive constant,p,q and r satisfy some suitable conditions.It is shown that every positive regular solution(u(x),v(x),w(x)) is radially symmetric and monotonic about some point by developing the moving plane method in an integral form.In addition,the regularity of the solutions is also proved by the contraction mapping principle.The conformal invariant property of the system is also investigated.  相似文献   

19.
In the first section of this article a new method for computing the densities of integrals of motion for the KdV equation is given. In the second section the variation with respect to q of the functional ∫ 0 π w (x,t,x,;q)dx (t is fixed) is computed, where W(x, t, s; q) is the Riemann function of the problem $$\begin{gathered} \frac{{\partial ^z u}}{{\partial x^2 }} - q(x)u = \frac{{\partial ^2 u}}{{\partial t^2 }} ( - \infty< x< \infty ), \hfill \\ u|_{t = 0} = f(x), \left. {\frac{{\partial u}}{{\partial t}}} \right|_{t = 0} = 0. \hfill \\ \end{gathered} $$   相似文献   

20.
讨论了一类具有奇异系数的p-Laplace问题-Δpu-μ|u|u|x|p=u|x|tu+λuq-2u,x∈Ω,u=0,x∈Ω无穷多解的存在性,其中N≥3,Ω是RN中一有界光滑区域,0∈Ω,Δpu=-div(|▽u|p-2▽u),0≤μ<μ=(N-p)ppp,10,1相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号