首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
采用液相电化学方法在硅基底上制备了石墨烯掺杂的类金刚石碳复合薄膜,探讨了电化学沉积复合薄膜的机理。利用扫描电子显微镜(SEM)、拉曼光谱(Raman)、透射电子显微镜(TEM)和傅里叶变换红外(FTIR)光谱技术对薄膜表面形貌和微观结构进行了分析表征。结果表明,石墨烯片均匀分散沉积在含氢类金刚石碳(a-C:H)基体中,沉积的石墨烯/类金刚石(G/a-C:H)复合薄膜表面相对均匀平整。场发射测试显示石墨烯掺杂使开启电场从4.7 V·μm-1增加至5.8 V·μm-1,场发射电流密度从384 μA·cm-2显著增加至876 μA·cm-2。  相似文献   

2.
直流负偏压对类金刚石薄膜结构的影响   总被引:3,自引:0,他引:3  
在不同的直流负偏压下利用直流射频等离子体辅助化学气相沉积技术在单晶硅表面沉积得到了类金刚石薄膜,用拉曼光谱、红外光谱和原子力显微镜对薄膜的结构和形貌进行了表征.结果表明:无偏压时,沉积得到的薄膜呈现类聚合物结构且表面比较粗糙,而叠加了偏压后,薄膜表现出类金刚石薄膜的结构特征,随着偏压的增大,膜中的氢含量和sp3碳含量均逐渐减小,且薄膜的表面粗糙度逐渐减小.  相似文献   

3.
用XPS和XAES分析电化学沉积的DLC膜   总被引:2,自引:0,他引:2       下载免费PDF全文
采用电化学沉积方法,以甲醇溶剂作碳源,直流电压作用下在单晶硅表面沉积得到碳薄膜。通过研究石墨、金刚石和样品薄膜的XPS和XAES谱图特征,证明了此方法沉积得到的是DLC薄膜;利用曲线拟合技术在C1s电子能谱图中拟合出sp3峰与sp2峰,并计算出样品薄膜中sp3碳的相对含量为55%;研究石墨、金刚石和样品薄膜的一阶微分XAES谱图,用线性插入法估算出样品薄膜中sp3碳的相对含量为60%。  相似文献   

4.
以聚酰亚胺薄膜为原料,经炭化形成碳膜;进而在碳膜表面制备了类金刚石碳(DLC)薄膜,研究了制备条件对碳膜导电性能的影响.采用扫描电镜分析了薄膜的表面形貌和微观结构;采用X射线衍射仪分析了薄膜的晶体结构.结果表明,DLC薄膜的电阻率随着沉积时间的延长先减小后增加;当沉积时间达到3 h时,相应DLC薄膜的电阻率达到最小值5.66×10-5Ω.m.  相似文献   

5.
郭静  汪浩  严辉 《化学通报》2007,70(7):521-526
采用电化学沉积法开展液相中类金刚石薄膜的制备工艺和理论的研究,对于完善类金刚石薄膜的合成技术,开拓类金刚石薄膜的应用领域,具有很重要的理论意义和实用价值。本文概述了液相电沉积技术的基本原理和方法,重点从四个方面介绍了电化学方法制备类金刚石薄膜的研究进展,总结了该方法所制备样品的性能,并对可能的反应机制作了综合性的阐述,最后对液相电沉积类金刚石薄膜的发展前景进行了展望。  相似文献   

6.
采用微波等离子体化学气相沉积法在本征硅上制备掺硼金刚石膜/碳膜平面式复合电极,其中硅片的一面为掺硼金刚石膜,另一面为碳膜。通过SEM和拉曼光谱分析了薄膜的表面形貌和成分,掺硼金刚石膜为纳米级金刚石,碳膜表面有均匀分布的凹坑;利用四探针、循环伏安法和交流阻抗法表征电极导电性和电化学性能,随着沉积时间增加,电极方阻减小;在铁氰化钾溶液中电极发生准可逆氧化还原反应,电势差为119mV,在103Hz附近阻抗为113Ω;多巴胺的检测限为5μmol·L-1。  相似文献   

7.
三种碳基电极材料的电化学性质对比研究(英文)   总被引:1,自引:0,他引:1  
对硼掺杂纳米金刚石(BDND),硼掺杂微米金刚石(BDMD)和玻碳(GC)电极的电化学性质做了对比研究.利用扫描电子显微镜表征了BDMD和BDND电极,其表面粒子大小分别为1-5μm和20-100nm.利用Raman光谱对两种金刚石薄膜的成分进行了表征,结果表明利用热丝化学气相沉积法得到了高质量的BDND和BDMD薄膜.采用0.5mol·L-1H2SO4溶液测定了三种电极的电化学窗口,BDND和BDMD电极的电化学窗口分别为3.3和3.0V,远比GC电极(2.5V)的要宽.[Fe(CN)6]3-/[Fe(CN)6]4-溶液的循环伏安和交流阻抗测定表明,在BDND、BDMD和GC电极上的峰间距(△Ep)分别为73、92和112mV,且其电子传递电阻(Ret)分别为(98±5)、(260±19)和(400±25)Ω.我们也研究了0.1mmol·L-1双酚A在三种电极上的电化学氧化行为.上述的电化学测定结果表明,两种金刚石电极均比GC电极表现出了更宽的电化学窗口、更好的电化学可逆性质、更快的电子传递速度和更高的电化学稳定性,更为重要的是与BDMD相比BDND的电化学性质有进一步的提高.  相似文献   

8.
采用射频磁控溅射法在双面抛光Si(100)基片上制备了类金刚石薄膜,通过磁过滤等离子体化学气相沉积法,以N2、H2混合气体为反应溅射气体,对类金刚石薄膜样品表面进行氨基改性.傅立叶变换红外透射光谱(FT-IR)的结果表明,改性后的类金刚石薄膜上有C-NH2键存在;光电子能谱(XPS)的结果表明,改性后的薄膜表面含氮量约为8.92%,N1s的结合能出现在氨基对应的结合能范围内,表明类金刚石薄膜经过适当改性后可以在薄膜表面产生氨基.  相似文献   

9.
采用液相电化学沉积法,以二氰二胺的丙酮溶液为沉积液,以镀有ITO(铟锡氧化膜)的导电玻璃为衬底制备了CNx薄膜.初步探讨了沉积温度和沉积电压对薄膜中氮含量的影响.通过XPS、FTIR光谱、SEM和US-Vis光谱对得到的CNx薄膜的化学结合状态、结构形貌和光学性质进行了表征,并用高电阻仪对薄膜的绝缘性进行了分析.XPS结果表明,CNx薄膜中碳氮主要以单键连接,sp3杂化的C—N键占85%.在IR光谱中,仅出现了C—N键和CN双键的吸收峰.SEM图谱显示CNx薄膜呈颗粒状,粒径平均为80nm左右.在水浴加热条件下沉积的CNx薄膜在200~300nm近紫外区为非线性吸收.薄膜的电阻率随氮含量的增加而增大,测量值在1012~1016Ω·cm之间.  相似文献   

10.
金刚石薄膜电化学   总被引:7,自引:0,他引:7  
金刚石由于其特殊的物理与化学性质,早在几百年前就吸引了人们对它的关注.化学气相沉积(chemical vapor deposition,CVD)法制备的高掺杂硼复合多晶金刚石薄膜,为金刚石薄膜在电化学中的应用开辟了新的领域.作为新型碳素电极材料,高掺杂硼复合多晶金刚石薄膜具有许多目前使用的电极材料所不可比拟的优异特性如:宽电化学势窗,低残留电流,极好的电化学稳定性以及表面不易被污染等.本文综述了高掺杂硼复合多晶金刚石薄膜电极在电化学中的几个重要应用,包括电分析、电合成及电化学法处理废水等.  相似文献   

11.
A detailed characterization of platinum- and gold-diamondlike carbon (DLC) nanocomposite films deposited onto silicon substrates is presented. A modified pulsed laser deposition (PLD) technique was used to incorporate noble metal nanoclusters into hydrogen-free DLC films. Several analytical techniques, including transmission electron microscopy, atomic force microscopy, Rutherford backscattering spectroscopy, X-ray photoelectron spectroscopy, Raman spectroscopy, and nanoindentation testing, were used to investigate these thin films in an effort to determine their physical and electrochemical properties. Rutherford backscattering spectroscopy indicated that the gold- and platinum-DLC films contain metal concentrations between three and 36 atomic percent. Cross-sectional transmission electron microscopy revealed that metal is present as arrays of noble metal islands embedded within the DLC matrix, while atomic force microscopy provided evidence of target splashing. In addition, due to the inclusion of metal, metal-DLC thin films exhibited greater conductivity than their metal-free counterparts. The electrochemical properties were studied using quasi-reversible redox couples and correlated to the metal concentration. Finally, the influence of the layer's composition on the electron-transfer kinetics and the achievable working potential window is discussed. The results discussed herein suggest that metal-DLC thin films grown by pulsed laser deposition present a promising alternative electrode material for electrochemistry.  相似文献   

12.
Titanium/diamond‐like carbon (Ti/DLC) bilayer films with different relative thickness were fabricated by direct‐current and pulsed cathode arc plasma method. Microstructure, morphological characteristics, and mechanical properties of the films were investigated in dependence of the thickness of Ti and DLC layers by Raman spectroscopy, atomic force microscopy, Knoop sclerometer, and surface profilometer. Raman spectra of Ti/DLC bilayers show the microstructure evolution (the size and ordering degree of sp2‐hybridized carbon clusters) with varying the thicknesses of Ti interlayer and DLC layer. Nano‐scaled Ti interlayer of 12–20 nm thickness presents the largest size effect. The catalytic effect of the sublayer is most pronounced in the carbon layer of less than 106 nm. In these thickness ranges, the bilayer films possessed the highest micro‐hardness and reactivity between atoms at interface. Internal stress in the bilayer monotonically decreases, with the thickness of Ti interlayer increasing to 30 nm and then becomes stable with the thickness. These results are associated with the occurrence of atomic diffusion process at Ti/C interface, and they are of cardinal significance to optimize the structure and mechanical properties of carbon‐based multilayer films. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

13.
Phosphorus doped diamond-like carbon (DLC) films were firstly synthesized by the electrolysis of methanol-Triphenylphosphorus (PPh3) solution under high voltage, atmospheric pressure and low temperature. The microstructure and morphology of the as-deposited films were analyzed by Raman spectroscopy, X-ray photoelectron spectroscopy, and atomic force microscopy. The measurements results suggested that phosphorus doping enhanced the carbon films graphitization and the doped phosphorus existed mainly in CP bonds with the P/C ratio of 0.034. The P-DLC films have larger surface roughness compared to the DLC film. Moreover, the formation of P-DLC films in liquid-phase electrodeposition was via the reactions of the –CH3 and –P groups to form CPx network.  相似文献   

14.
We fabricate F-doped and F-S-codoped diamond-like carbon (DLC) films using plasma-enhanced chemical vapor deposition system. The hardness, Raman spectra, and high-vacuum tribological behaviors indicate that the films are DLC films. The hardness is close related to the tribological properties of DLC films under high vacuum. The high hardness of DLC films would be helpful for obtaining the long lifetime under high vacuum. The lifetimes of F-S-codoped DLC films are about 120 and 140 seconds, which is attributed to the fast graphitization under high vacuum. The lifetime of F-doped DLC films is prolonged to the value of around 300 and 440 seconds, X-ray photoelectron spectroscopy analysis exhibits the existence of the “adsorption” F, and transmission electron microscopy analysis shows that the “adsorption” F could react with Fe to form layered FeF2 nanocrystal at the initial sliding, which could be helpful for prolonging the lifetime of F-doped DLC films under high vacuum. This investigation opens a new window to overcome the disadvantage of F, S-doped DLC films under high vacuum.  相似文献   

15.
Diamond-like carbon (DLC) coatings were modified by doping the thin films with Ca-O compounds. Raman spectroscopy indicates growth of sp(2)-hybridised, ordered regions in size and/or number within the amorphous carbon-hydrogen network as a result of the Ca-O-incorporation. CaCO(3) was identified by X-ray induced photoelectron spectroscopy. Proliferation and morphology of L929 mouse fibroblasts reveal improved biocompatibility of Ca-O-modified DLC.  相似文献   

16.
Amorphous carbon (or diamond-like carbon, DLC) films have shown a number of important properties usable for a wide range of applications for very thin coatings with low friction and good wear resistance. DLC films alloyed with (semi-)metals show some improved properties and can be deposited by various methods. Among those, the widely used magnetron sputtering of carbon targets is known to increase the number of defects in the films. Therefore, in this paper an alternative approach of depositing silicon-carbide-containing polymeric hydrogenated DLC films using unbalanced magnetron sputtering was investigated. The influence of the C2H2 precursor concentration in the deposition chamber on the chemical and structural properties of the deposited films was investigated by Raman spectroscopy, X-ray photoelectron spectroscopy and elastic recoil detection analysis. Roughness, mechanical properties and scratch response of the films were evaluated with the help of atomic force microscopy and nanoindentation. The Raman spectra revealed a strong correlation of the film structure with the C2H2 concentration during deposition. A higher C2H2 flow rate results in an increase in SiC content and decrease in hydrogen content in the film. This in turn increases hardness and elastic modulus and decreases the ratio H/E and H3/E2. The highest scratch resistance is exhibited by the film with the highest hardness, and the film having the highest overall sp3 bond content shows the highest elastic recovery during scratching.  相似文献   

17.
Because of their outstanding characteristics, diamond‐like carbon (DLC) thin films have been recognized as interesting materials for a variety of applications. For this reason, the effects of the incorporation of different elements on their fundamental properties have been the focus of many studies. In this work, nitrogen‐incorporated DLC films were deposited on Si (100) substrates by DC magnetron sputtering of a graphite target under a variable N2 gas flow rate in CH4 + N2 + Ar gas mixtures. The influence of high N2 flow ratios (20, 40 and 60%) on the chemical, structural and morphological properties of N‐DLC films was investigated. Different techniques including field emission gun‐equipped scanning electron microscope (FEG‐SEM), energy‐dispersive X‐ray spectroscopy (EDS), atomic force microscopy (AFM), profilometry, Rutherford backscattering spectrometry (RBS) and Raman spectroscopy (325‐nm and 514‐nm excitation) were used to examine the properties of the N‐DLC films. Thus, the incorporation of nitrogen was correlated with the morphology, roughness, thickness, structure and chemical bonding of the films. Overall, the results obtained indicate that the fundamental properties of N‐DLC films are not only related to the nitrogen content in the film but also to the type of chemical bonds formed. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

18.
Diamond‐like carbon (DLC) films on glass wafers were produced by middle frequency pulsed unbalanced magnetron sputtering technique (MFPUMST) at different sputtering current. The chemical bonding of carbon characterized by Raman spectroscopy and X‐ray photoelectron spectroscopy (XPS) show that the sp3 fraction in DLC films increases with increasing sputtering current from 100 to 300 mA, and then decreases above 300 mA. Mechanical properties like nano‐hardness and elastic recovery for these films under different sputtering currents analyzed by a nano‐indentation technique show the same tendency that nano‐hardness and elastic recovery increase with increasing sputtering current from 100 to 300 mA, and then decrease with increasing sputtering current from 300 to 400 mA. These results indicate that the sp3 fraction in the prepared DLC films is directly related to nano‐hardness and elastic recovery. The results shown above indicate that the parameter of the preparation—sputtering current has a strong influence on the bonding configuration of the deposited DLC films. The mechanism of sputtering current on the sp3 fraction is discussed in this paper. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

19.
With admixture of n-diamond and diamond-like carbon powders (DLC) as carbon source, transparent wafers have been synthesized by hydrothermal process at 100℃ and atmosphere pressure. Scanning electron microscopy, X-ray diffraction, Raman spectroscopy, transmission electron microscopy, electron-probe microanalysis and Fourier-transform infrared spectrometer were used to analyze those transparent wafers. These results indicated that the transparent wafers were amorphous sp^3-banding carbon wafer, and that the wafers were not aggregate of DLC from the carbon source but a new kind of reaction product by hydrothermal treatment.  相似文献   

20.
This paper reports the deposition of diamond-like carbon (DLC) films on Si <100>, using a low energy (1.45 kJ) dense plasma focus assisted sputtering of graphite insert at the tip of the tapered anode. The substrates are placed in front of the anode at different axial and angular positions and are exposed to multiple focus shots. The information regarding the DLC structure is acquired by using Raman spectroscopy. The spectra are characterized by two broad bands known as “G-band” and “D-band”. The results point towards the formation of DLC films with both sp3 (diamond like) and sp2 (graphite like) domains. In X-ray diffraction (XRD) pattern, no additional peak is observed except a peak at 2θ = 69° which corresponds to the silicon (Si) substrate. The intensity of Si peak is reduced after treatment indicating the deposition of amorphous carbon. Scanning electron microscopy (SEM) results demonstrate that the smoothness of the film increases with increasing the substrate angular positions with respect to the anode axis. Energy dispersive X-ray (EDX) analysis reveals that the films deposited at lower axial and angular positions are thicker which is complemented by the cross-sectional views of the films.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号