首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   29篇
  免费   34篇
  国内免费   13篇
化学   18篇
晶体学   12篇
物理学   46篇
  2022年   1篇
  2019年   3篇
  2018年   1篇
  2016年   1篇
  2015年   3篇
  2014年   2篇
  2013年   6篇
  2012年   6篇
  2011年   3篇
  2009年   2篇
  2008年   3篇
  2007年   10篇
  2006年   7篇
  2005年   7篇
  2004年   3篇
  2003年   2篇
  2002年   2篇
  2001年   1篇
  2000年   3篇
  1999年   1篇
  1998年   5篇
  1997年   4篇
排序方式: 共有76条查询结果,搜索用时 31 毫秒
1.
以单相多晶Cu1+x Al1-x O2陶瓷做靶材,采用射频磁控溅射方法在石英衬底上沉积了Cu过量的Cu1+x Al1-x O2(0≤x≤0.04)薄膜.通过X射线衍射(XRD)、紫外吸收光谱以及电导率的测试,表征了不同含Cu量Cu1+x Al1-x O2薄膜的结构与光电性能.结果表明,沉积态薄膜经退火处理后,由非晶转变为具有铜铁矿结构的纯相Cu1+x Al1-x O2;退火态薄膜在可见光区域的平均透过率约为55;,平均可见光透过率不受Cu含量的影响;退火态薄膜样品的室温电导率随Cu含量的增加而增大,Cu1.04 Al0.96 O2的室温电导率最高,为1.22×10-2 S/cm;在近室温区(200~300 K),退火态薄膜均很好地符合Arrhenius热激活模式.  相似文献   
2.
采用等离子体增强化学气相沉积(PECVD)方法,在无氨与1050℃的条件下通过气液固(V-L-S)机理成功制备出六方纤锌矿结构单晶GaN纳米线其拉曼测试结果表明,所制备的纳米线存在较大的表面无序度并表现出明显的小尺寸效应样品光致发光表明其具有典型的纳米线光谱特征,另外,无氨法制备的纳米线也具有较好的场发射特性.  相似文献   
3.
采用溶胶-凝胶工艺在Si(100)衬底上制备了Ba2TiSi2O8(BTS)薄膜。通过XRD衍射、傅立叶红外(FT-IR)、拉曼(Raman)散射光谱和原子力显微镜(AFM)对薄膜的显微结构进行了表征。AFM分析显示,BTS薄膜表面光滑,晶粒尺寸在0.30~0.50μm。薄膜结构分析表明:随着退火温度的增加,BTS薄膜的结晶度增加,薄膜结构变得更加致密。同时,随着退火温度的升高,晶胞尺寸出现了收缩,导致了BTS薄膜的四方比c/a从0.613上升到0.618,将对薄膜的压电性能产生影响。  相似文献   
4.
商业化LiFePO_4(LFP)正极材料的导电性一直是制约其性能提高的关键。为了提高LFP的性能,利用沸石咪唑酯骨架-8(ZIF-8)制备多孔碳材料(CZIF-8)改善商业化LFP正极材料的导电性,对比了两种改性LFP的方法:1)将退火的ZIF-8以物理混合的方法与LFP混合制得LFP/CZIF-8正极材料;2)ZIF-8在LFP表面原位生长后退火制得LFP@CZIF-8正极材料。X射线粉末衍射(XRD)、氮气吸脱附(BET)和拉曼光谱等测试证明,改性后的LFP仍具有橄榄石型结构,同时出现了具有介孔结构的石墨化碳材料的特征。扫描电子显微镜(SEM)和透射电子显微镜(TEM)测试证明LFP/CZIF-8样品中LFP与CZIF-8之间未形成链接结构,而在LFP@CZIF-8样品中二者形成了核壳结构。电化学阻抗测试(EIS)表明,改性后样品的离子传输阻抗明显减小,说明两种方法均提高了LFP的导电性。充放电循环测试表明,两种改性方法均能提高LFP的循环性能和库伦效率。不同的是,倍率性能测试表明,LFP/CZIF-8样品的高倍率性能比LFP@CZIF-8样品更有优势,在10.0 C电流倍率下能够达到57.8 m A·h/g。这一研究为商业化锂离子电池电极材料的改性提供了新的思路,并且通过方法优化为产业化做了铺垫。  相似文献   
5.
C60薄膜的离子注入损伤研究   总被引:1,自引:0,他引:1       下载免费PDF全文
邹云娟  严辉  陈光华  金运范  杨茹 《物理学报》1998,47(11):1923-1927
在200 keV重离子加速器上,用120—360 keV的H,N,Ar和Mo离子注入C60薄膜.对注入后薄膜的拉曼谱进行了分析.结果表明,不同离子注入C60薄膜后,C60的1469 cm-1特征峰随注入剂量的增加均呈指数式下降,同时在1300—1700 cm-1范围出现非晶碳峰,并逐渐增强,最终完全非晶化.而且1469 cm-1拉曼峰的强度及C60薄膜完全非晶化所对应的剂量与注入离子的种类和能量有关.进一步的分析表明,C60分子的损伤主要是由注入离子的核能量转移所造成,与电子能量转移无关.H离子注入C60薄膜后,1469 cm-1处特征拉曼峰向短波方向非对称展宽,这可能是注入的H离子通过电子能量转移使C60分子发生聚合的结果. 关键词:  相似文献   
6.
织构C60薄膜的生长与光致发光特性   总被引:1,自引:0,他引:1       下载免费PDF全文
陈光华  张阳  严辉 《物理学报》1997,46(7):1375-1379
用Hot Wal方法,在氟金云母单晶上生长出了(111)织构的C60薄膜.用X射线衍射、Raman散射、扫描电子显微镜和原子力显微镜研究了织构C60薄膜的结晶质量和结构特性.测量了织构C60薄膜在室温300K和低温77K的光致发光光谱.对所得结果进行了分析与讨论 关键词:  相似文献   
7.
金属与金刚石薄膜接触的电学特性研究   总被引:3,自引:0,他引:3       下载免费PDF全文
陈光华  张兴旺  季亚英  严辉 《物理学报》1997,46(6):1188-1192
用热丝辅助化学汽相沉积技术在Si衬底上合成了含少量受主型杂质的近于本征的金刚石薄膜,并研究了三种金属(Cu,Ag和Al)与它接触的电学特性,以及退火对接触特性的影响.结果表明Cu,Ag与金刚石薄膜接触的电学特性比较类似,而Al则明显不同;而且退火对它们的接触特性影响很大 关键词:  相似文献   
8.
水热法合成K0.5Bi0.5TiO3纳米陶瓷粉体   总被引:3,自引:0,他引:3  
K0.5Bi0.5TiO3(KBT)nanocrystalline particles were hydrothermally synthesized from Bi(NO3)3·5H2O, TiO2 and KOH. The crystal phase, chemical composition and microstructure were characterized by XRD, XRF, Raman scattering spectroscopy and TEM. The results indicated that the products were pure perovskite structured K0.5Bi0.5TiO3 with chemical stoichiometry and perovskite structure. The TEM observation revealed that the particles possessed a feature of cubic shape and a nano-scale of about 40 nm. The KBT ceramics sintered at 1 040 ℃ from hydrothermal powders show higher density and better electric properties than that prepared by a solid-state reaction method.  相似文献   
9.
郭静  汪浩  严辉 《化学通报》2007,70(7):521-526
采用电化学沉积法开展液相中类金刚石薄膜的制备工艺和理论的研究,对于完善类金刚石薄膜的合成技术,开拓类金刚石薄膜的应用领域,具有很重要的理论意义和实用价值。本文概述了液相电沉积技术的基本原理和方法,重点从四个方面介绍了电化学方法制备类金刚石薄膜的研究进展,总结了该方法所制备样品的性能,并对可能的反应机制作了综合性的阐述,最后对液相电沉积类金刚石薄膜的发展前景进行了展望。  相似文献   
10.
侯育冬  侯磊  杨建锋  朱满康  汪浩  严辉 《化学学报》2007,65(10):950-954
采用溶胶-凝胶法、水热法和溶胶-凝胶-水热法三种化学方法合成K0.5Bi0.5TiO3 (KBT)无铅压电陶瓷粉体. 用X射线衍射(XRD)分析产物的结构, 用扫描电镜(SEM)和透射电镜(TEM)观察产物的形貌. 实验结果表明, 三种化学方法均可获得纯钙钛矿相KBT粉体, 但不同工艺获得的粉体在形貌和生成机制上有很大的不同. 溶胶-凝胶法属高温固相扩散机制, 需要700 ℃以上温度煅烧才可获得KBT纯相, 且粉体颗粒度大、团聚严重. 水热法符合溶解-结晶机制, 生长出四方形的KBT纳米片. 溶胶-凝胶-水热法利用了凝胶团聚体空间链状结构的模板作用, 通过原位结晶机制生长出KBT纳米线.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号