首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 142 毫秒
1.
在B3LYP/6-311++G(2df,p)水平上优化了标题反应驻点物种的几何构型, 并在相同水平上通过频率计算和内禀反应坐标(IRC)分析对过渡态结构及连接性进行了验证. 采用双水平计算方法HL//B3LYP/6-311++G(2df,p)对所有驻点及部分选择点进行了单点能校正, 构建了CH2SH+NO2反应体系的单重态反应势能剖面. 研究结果表明, CH2SH与NO2反应体系存在4条主要反应通道, 两个自由基中的C与N首先进行单重态耦合, 形成稳定的中间体HSCH2NO2 (a). 中间体a经过C—N键断裂和H(1)—O(2)形成过程生成主要产物P1 (CH2S+trans-HONO), 此过程需克服124.1 kJ•mol-1的能垒. 中间体a也可以经过C—N键断裂及C—O键形成转化为中间体HSCH2ONO (b), 此过程的能垒高达238.34 kJ•mol-1. b再经过一系列的重排异构转化得到产物P2 (CH2S+cis-HONO), P3 (CH2S+HNO2)和P4 (SCH2OH+NO). 所有通道均为放热反应, 反应能分别为-150.37, -148.53, -114.42和-131.56 kJ•mol-1. 标题反应主通道R→a→TSa/P1→P1的表观活化能为-91.82 kJ•mol-1, 此通道在200~3000 K温度区间内表观反应速率常数三参数表达式为kCVT/SCT=8.3×10-40T4.4 exp(12789.3/T) cm3•molecule-1•s-1.  相似文献   

2.
化甲烷催化剂的可能性. 在B3LYP/6-311++G(3df,3p)和MP2/6-311++G(3df,3p)水平下优化了反应通道上各驻点(反应物、中间体、过渡态和产物)的几何构型. 在G2M(+)水平下计算了各物种的能量. 研究结果表明: CH4与Br+(3P)反应存在三条不同的吸热反应途径, 与Br+(1D)反应存在二条不同的放热反应通道. 反应更易于通过单重态反应通道进行. 理论结果不仅较好地解释了实验事实, 还说明Br+有可能成为一种活化甲烷的催化剂.  相似文献   

3.
应用密度泛函理论研究了反应通道(a)C2H3+NO→CH3+NCO和(b)C2H3+NO→OH+C2H2N的反应机理.在B3LYP/6-31G(d)水平上优化了反应物、中间体、过滤态、产物的几何构型,通过频率分析确定了11个中间体和10个过渡态.所有的反应物、中间体、过渡态、产物都在CCSD/6-311++G(d,p)水平上进行了单点能较正.并讨论了反应的异构化过程.计算结果表明10是能量最低的中间体,比反应物的能量低308 479kJ/mol;过渡态1/3,2/5,3/4,4/8比反应物的能量高,其中3/4是能量最高的过渡态,比反应物的能量高91 894kJ/mol.通道(a)和(b)的理论放热值分别为111 059和96 619kJ/mol.  相似文献   

4.
C2H3+NO2反应速率常数的研究   总被引:6,自引:0,他引:6  
利用激光光解C2H3Br产生C2H3自由基,在气相298 K, 总压2.66×103 Pa的条件下,研究C2H3与NO2的反应,用激光光解-激光诱导荧光(LP-LIF)检测中间产物OH自由基的相对浓度随着反应时间的变化关系,报导了双分子反应C2H3+NO2的速率常数k(C2H3+NO2)=(1.8±0.05)×10-11cm3•molec.-1•s-1,同时也得到OH+NO2反应的速率常数k(OH+NO2)=(2.1±0.15)×10-12 cm3•molec.-1•s-1.  相似文献   

5.
在G2(B3LYP/MP2/CC)理论水平上研究了CH(X2∏)自由基与氧化二氮(NNO)分子的反应.计算了反应体系的最低二重态势能面上各驻点的构型参数、振动频率和能量,揭示了此反应存在两种机理和六个通道其中HC和NNO复合,生成中间体HC(N)NO,解离得到产物HCN+NO,这是最主要的通道之一;HC插入NO键,克服38.9 KJ/mol的势垒,产生富能的中间体HC(O)NN,预测了五个反应通道,其中主要反应通道为:NN+HCO.  相似文献   

6.
H+CH2CO反应机理的G2计算   总被引:2,自引:0,他引:2  
分别在UQCISD/6-311G(d,p)和G2理论计算水平上,对CH2CO和H反应可能存在的四条反应通道进行了研究,详细分析了每个通道的反应机理;通过振动分析的虚频数和内禀反应坐标(IRC)计算,确认了反应涉及的每一个过渡态.通过反应位能剖面的比较,发现经过一个中间体生成CH3+CO的一条途径是主反应通道,该通道是个放热反应,总焓变为-146.07 kJ•mol-1,速控步骤的位垒为55.09 kJ•mol-1.理论计算结果较好地解释了实验观察到的主要产物和副产物并存的现象。  相似文献   

7.
类硅烯H2C=SiLiBr与RH (R=F, OH, NH2)的插入反应   总被引:1,自引:0,他引:1  
采用DFT B3LYP和QCISD方法研究了类硅烯H2C=SiLiBr与RH (R=F, OH, NH2)的插入反应. 在B3LYP/6- 311+G(d,p)水平上优化了反应势能面上的驻点构型. 结果表明, H2C=SiLiBr与HF, H2O或NH3发生插入反应的机理相同. QCISD/6-311++G(d,p)//B3LYP/6-311+G(d,p)计算的三个反应的势垒分别为148.62, 164.42和165.07 kJ•mol-1, 反应热分别为-69.63, -43.02和-28.27 kJ•mol-1. 相同条件下发生插入反应时, 反应活性都是H—F>H—OH>H—NH2.  相似文献   

8.
卢林刚  杨守生  张燕  黄晓东 《化学学报》2009,67(14):1695-1699
以新戊二醇、三氯氧磷及1,3,5-三羟基苯等为原料, 经过两步反应合成新型磷系阻燃剂1,3,5-三(5,5-二甲基-1,3-二氧杂-2-氧代己内磷酰基-2-氧)苯, 采用元素分析、FT-IR、MS及1H NMR等技术确定了标题化合物的分子结构. 以TG-DTG为手段, 研究该新型磷系阻燃剂在氮气气氛中的热分解动力学; 利用Kissinger法、Flynn-Wall-Ozawa (FWO)法对其进行热分解动力学研究, 求出该阻燃剂的热分解动力学参数; 利用Coast-Redfern法研究该阻燃剂的热分解机理. 结果表明, Kissinger法所求得的表观活化能为171.72 kJ•mol-1, 指前因子ln A为37.57; Flynn-Wall-Ozawa法所求得的表观活化能为172.05 kJ•mol-1. 标题化合物的热分解动力学方程g(α)=α1/4, 反应级数n=1/4.  相似文献   

9.
D301R树脂对Keggin型铁取代杂多阴离子的吸附性能研究   总被引:5,自引:0,他引:5  
详细研究了D301R弱碱性阴离子交换树脂对Keggin型铁取代杂多阴离子PW11O39Fe(III)(H2O)4- (PW11Fe)的吸附作用, 考察了不同pH和温度对吸附量和吸附速率的影响, 测定了不同温度下吸附的动力学曲线和吸附等温线, 提出吸附动力学模型和计算了吸附的热力学函数, 结果表明, 在pH 2~8的范围内, PW11Fe的吸附量随溶液pH值的升高而增加, 随溶液温度的升高而降低; 吸附动力学符合表面过程控制的准二级反应模型, 其速率常数k2在298 K时为 9.33×10-4 g•mg-1•min-1, 并随温度的升高而减小. 吸附等温线符合Freundlich吸附模型, 吸附热约为40 kJ•mol-1, 因此, 吸附为物理吸附.  相似文献   

10.
以纳米二氧化钛(TiO2)光催化降解甲醛, 使用2-甲基-2-亚硝基丙烷(2-methyl-2-nitroso-propane, MNP)作为自旋捕截剂(spin trap, ST), 研究了反应过程中的自由基中间体, 得到了一种新的自旋加合物(spin adduct, ST-R). 电子顺磁共振(Electron Paramagnetic Resonance, EPR)的结果表明, 甲醛在水溶液中降解的反应中间体为•CH(OH)2, 并提出了一种新的降解机理.  相似文献   

11.
张金生  孟庆喜  李明 《化学学报》2005,63(8):686-692
用量子化学DFT, MP2, G3和G3MP2方法对FC(O)O自由基与NO2的反应机理进行了理论研究. 优化了反应势能面上各驻点的几何结构, 通过内禀反应坐标(IRC)计算和振动分析, 确认了反应中的过渡态, 并用过渡态理论(TST)计算了相关反应的速率常数.  相似文献   

12.
在G3B3,CCSD(T)/6-311++G(d,p)//B3LYP/6-311++G(d,p)水平上详细研究了CH3SH与基态NO2的微观反应机理.在B3LYP/6-311++G(d,p)水平得到了反应势能面上所有反应物、过渡态和产物的优化构型,通过振动频率分析和内禀反应坐标(IRC)跟踪验证了过渡态与反应物和产物的连接关系.在CCSD(T)/6-311++G(d,p)和G3B3水平计算了各物种的能量,得到了反应势能面.利用经典过渡态理论(TST)与变分过渡态理论(CVT)并结合小曲率隧道效应模型(SCT),分别计算了在200~3000K温度范围内的速率常数kTST,kCVT和kCVT/SCT.研究结果表明,该反应体系共存在5个反应通道,其中N进攻巯基上H原子生成CH3S+HNO2的通道活化势垒较低,为主要反应通道.动力学数据也表明,该通道在200~3000K计算温度范围内占绝对优势,拟合得到的速率常数表达式为k1CVT/SCT=1.93×10-16T0.21exp(-558.2/T)cm3·molecule-1·s-1.  相似文献   

13.
理论研究了羟基负离子(OH-)与氟氯代甲烷(CH2ClF)反应的阴离子产物通道. 分别在B3LYP/6-31+G(d,p)和B3LYP/6-311++G(2d,p)水平上得到反应势能面上各关键物种的优化构型, 进而计算得到谐振频率和零点能. 基于CCSD(T)/6-311+G(3df,3dp)水平的相对能量, 描述了由质子转移和双分子亲核取代(SN2)过程生成各阴离子产物的途径. 各阴离子产物途径势垒的计算结果表明质子转移过程是实验中的主要产物通道, 与以往实验测量的结论相符. 此外, 计算还显示双分子亲核取代过程得到了非典型的阴离子产物, 其中动力学效应可能会导致F-的生成.  相似文献   

14.
在B3LYP/6-311++G(2df,p)水平下对单分子水参与下的CH_2SH+NO_2反应的微观机理进行了研究.为了获得更准确的能量信息,采用HL复合方法和CCSD(T)/aug-ccpvtz方法进行单点能校正.结果表明,加入单分子水后的CH_2SH+NO_2反应体系,共经过10条不同的反应路径,得到6种反应产物.与裸反应(CH_2SH+NO_2)相比,水分子在反应中起到了明显的正催化作用.不仅使生成产物trans-HONO的能垒(-52.84kJ·mol~(-1))降低了176.94kJ·mol~(-1),而且不需经过复杂的重排和异构化过程便可得到产物cis-HONO.在生成产物cis-HONO通道(Path3和Path4)中,活化能垒分别为143.65和126.70kJ·mol~(-1),而其裸反应的活化能垒却高达238.34kJ·mol~(-1).生成HNO_2的通道中(Path5和Path6)活化能垒分别为295.23和-42.19kJ·mol~(-1).其中Path6的无势垒过程使HNO_2也成为该反应的主要产物.另外,单分子水还可通过氢迁移的方式直接参与CH_2SH+NO_2的反应,活化能垒(TS7-TS10)分别为-10.62,151.03,186.22和155.10kJ·mol~(-1).除直接抽氢通道中的(Path8-Path10)外,其余反应通道均为放热反应,在热力学上是可行的.  相似文献   

15.
The complex doublet potential energy surface of the CH(2)NO(2) system is investigated at the B3LYP/6-31G(d,p) and QCISD(T)/6-311G(d,p) (single-point) levels to explore the possible reaction mechanism of the triplet CH(2) radical with NO(2). Forty minimum isomers and 92 transition states are located. For the most relevant reaction pathways, the high-level QCISD(T)/6-311 + G(2df,2p) calculations are performed at the B3LYP/6-31G(d,p) geometries to accurately determine the energetics. It is found that the top attack of the (3)CH(2) radical at the N-atom of NO(2) first forms the branched open-chain H(2)CNO(2) a with no barrier followed by ring closure to give the three-membered ring isomer cC(H(2))ON-O b that will almost barrierlessly dissociate to product P(1) H(2)CO + NO. The lesser followed competitive channel is the 1,3-H-shift of a to isomer HCN(O)OH c, which will take subsequent cis-trans conversion and dissociation to P(2) OH + HCNO. The direct O-extrusion of a to product P(3) (3)O + H(2)CNO is even much less feasible. Because the intermediates and transition states involved in the above three channels are all lower than the reactants in energy, the title reaction is expected to be rapid, as is consistent with the measured large rate constant at room temperature. Formation of the other very low-lying dissociation products such as NH(2) + CO(2), OH + HNCO and H(2)O + NCO seems unlikely due to kinetic hindrance. Moreover, the (3)CH(2) attack at the end-O of NO(2) is a barrier-consumed process, and thus may only be of significance at very high temperatures. The reaction of the singlet CH(2) with NO(2) is also briefly discussed. Our calculated results may assist in future laboratory identification of the products of the title reaction.  相似文献   

16.
The elementary reaction of the CH3 radical with NO2 was investigated by time-resolved FTIR spectroscopy and quantum chemical calculations. The CH3 radical was produced by laser photolysis of CH3Br or CH3I at 248 nm. Vibrationally excited products OH, HNO and CO2 were observed by the time-resolved spectroscopy for the first time. The formation of another product NO was also verified. According to these observations, the product channels leading to CH3O+NO, CH2NO+OH and HNO+H2CO were identified. The channel of CH3O+NO was the major one. The reaction mechanisms of the above channels were studied by quantum chemical calculations at CCSD(T)/6-311++G(df,p)//MP2/6-311G(d,p) level. The calculated results fit with the experimental observations well.  相似文献   

17.
理论研究了羟基负离子(OH-)与氟氯代甲烷(CH2CIF)反应的阴离子产物通道.分别在B3LYP/6-31+G(d,p)和B3LYP/6-311++G(2d,p)水平上得到反应势能面上各关键物种的优化构型,进而计算得到谐振频率和零点能.基于CCSD(T)/6-311+G(3df,3dp)水平的相对能量,描述了由质子转移和双分子亲核取代(SN2)过程生成各阴离子产物的途径.各阴离子产物途径势垒的计算结果表明质子转移过程是实验中的主要产物通道,与以往实验测量的结论相符.此外,计算还显示双分子亲核取代过程得到了非典型的阴离子产物,其中动力学效应可能会导致F-的生成.  相似文献   

18.
采用BMC-CCSD//B3LYP/6-311G(d,p)方法对CH3SH+CN反应机理进行了详细的理论研究.反应中涉及的各稳定点的构型、振动频率和零点能在B3LYP/6-311G(d,p)水平下计算得到,计算结果表明,该反应存在两种反应机理,5条可能的反应通道.SN2机理由于能垒太高,与直接氢抽提机理相比可以忽略.该反应的最可行通道为CN中的C原子进攻SH中的H原子经由一个前期和一个后期分子络合物生成产物CH3S和HCN.计算得到的反应焓变与已有实验值非常吻合.  相似文献   

19.
The gas phase and solvent dependent preference of the tautomerization between 2-pyridinethiol (2SH) and 2-pyridinethione (2S) has been assessed using variable temperature Fourier transform infrared (FTIR) experiments, as well as ab initio and density functional theory computations. No spectroscopic evidence (nu(S)(-)(H) stretch) for 2SH was observed in toluene, C(6)D(6), heptane, or methylene chloride solutions. Although, C(s)() 2SH is 2.61 kcal/mol more stable than C(s)() 2S (CCSD(T)/cc-pVTZ//B3LYP/6-311+G(3df,2p)+ZPE), cyclohexane solvent-field relative energies (IPCM-MP2/6-311+G(3df,2p)) favor 2S by 1.96 kcal/mol. This is in accord with the FTIR observations and in quantitative agreement with the -2.6 kcal/mol solution (toluene or C(6)D(6)) calorimetric enthalpy for the 2S/2SH tautomerization favoring the thione. As the intramolecular transition state for the 2S, 2SH tautomerization (2TS) lies 25 (CBS-Q) to 30 kcal/mol (CCSD/cc-pVTZ) higher in energy than either tautomer, tautomerization probably occurs in the hydrogen bonded dimer. The B3LYP/6-311+G(3df,2p) optimized C(2) 2SH dimer is 10.23 kcal/mol + ZPE higher in energy than the C(2)(h)() 2S dimer and is only 2.95 kcal/mol + ZPE lower in energy than the C(2) 2TS dimer transition state. Dimerization equilibrium measurements (FTIR, C(6)D(6)) over the temperature range 22-63 degrees C agree: K(eq)(298) = 165 +/- 40 M(-)(1), DeltaH = -7.0 +/- 0.7 kcal/mol, and DeltaS = -13.4 +/- 3.0 cal/(mol deg). The difference between experimental and B3LYP/6-311+G(3df,2p) [-34.62 cal/(mol deg)] entropy changes is due to solvent effects. The B3LYP/6-311+G(3df,2p) nucleus independent chemical shifts (NICS) are -8.8 and -3.5 ppm 1 A above the 2SH and 2S ring centers, respectively, and the thiol is aromatic. Although the thione is not aromatic, it is stabilized by the thioamide resonance. In solvent, the large 2S dipole, 2-3 times greater than 2SH, favors the thione tautomer and, in conclusion, 2S is thermodynamically more stable than 2SH in solution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号