首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 875 毫秒
1.
CH_4与NO_2反应的微观机理及动力学性质的理论研究   总被引:1,自引:1,他引:0  
采用量子化学计算方法,研究了CH_4+NO_2反应直接氢抽提反应通道的机理和速率常数.该反应有3条反应通道分别生成CH_3+HNO_2,CH_3+trans-HONO和CH_3+cis-HONO.计算结果表明采用变分过渡态理论加小曲率隧道效应校正计算得到反应速率常数和已有的实验值很吻合.在整个研究温度区间,O原子提取H原子生成CH_3+cis-HONO是反应的主要通道.  相似文献   

2.
本文采用CCSD(T)/aug-cc-pVTZ//UB3LYP/6-311+G(2d,p)方法对HCl+NO_3反应机理及速率常数进行了研究,并在此基础上考虑了水分子对该反应的影响。研究结果表明,HCl+NO_3反应经历了生成产物为Cl+HNO_3的通道,克服了13.67kcal·mol~(-1)的能垒。加入水分子后,所得的产物并没有发生改变,但势能面却比裸反应复杂得多,经历了NO_3…H_2O+HCl、H_2O…HCl+NO_3和HCl…H_2O+NO_3三条反应通道。其中通道HCl…H_2O+NO_3为水分子参与反应的优势通道。此外,该通道比相同温度下裸反应的速率常数k_(R1)提高了0.33×10~4~1.07×10~7倍,且在298K时,k’_(RW3)/k’_(total)已达到95.9%,说明此时在实际大气环境中水分子对NO_3+HCl反应有明显的影响。  相似文献   

3.
采用密度泛函和耦合簇理论方法研究了HS与HONO的反应机理.在B3LYP/6-311+G(2df,2p)水平上对HS+HONO反应中的所有物种进行了几何构型优化和频率分析,通过内禀反应坐标(IRC)确认了反应物、过渡态、中间体和产物之间的相关性;采用CCSD(T)/6-311+G(2df,2p)方法获得了各物种的单点能.计算结果表明:HS+HONO的主要反应通道为HS+cis-HONO→p2-cis-IM1→p2-cis-TS→p2-IM2→P2(H_2S+NO_2),其反应活化能为71.26kJ·mol~(-1).  相似文献   

4.
本文在CCSD(T)/aug-cc-pVTZ//M06-2X/6-311+G(3d,2p)水平上构建了HO_2与HONO及其异构体的反应势能剖面,并对各通道的速率常数进行了计算。结果表明,HONO存在cis-HONO、trans-HONO、HNO_2三种不同的异构体,其中HNO_2是最稳定的构型。HNO_2+HO_2反应(R3)能垒比其他两个反应(R1(cisHONO+HO_2)和R2(trans-HONO+HO_2))的能垒降低了8. 2~13. 8 kcal·mol~(-1)。采用传统过渡态理论结合Wigner校正对各反应在240~425 K范围内的速率常数进行了计算。结果表明,反应R3的速率常数比R1和R2的对应值大4~9个数量级,表明HO_2+HONO及其异构体的抽氢反应的速率主要取决于HNO_2+HO_2反应。  相似文献   

5.
本文采用CCSD(T)/aug-cc-pVTZ//B3LYP/aug-cc-pVTZ方法构建了NO_2+HSO反应的单、三重态势能面,并对主通道速率常数进行了计算。结果表明,该反应在单[R1(HN(O)O+~1SO)、R2 (cis-HONO+~1SO)和R3 (trans-HONO+~1SO)]、三重态[R6 (HN (O)O+~3SO)、R7 (cis-HONO+~3SO)和R8 (trans-HONO+~3SO)]均存在3条抽氢反应通道,在单[R4(NO+HS(O)O)和R5(H+SO_2+NO)]、三重态[R9(HS(O) O+NO)和R10(H+SO_2+NO)]均存在两条抽氧通道,其中单重态抽氢通道R2(cis-HONO+~1SO)是NO_2+HSO反应主通道。利用传统过渡态理论(TST)并结合Wigner校正,计算了上述10条通道在200K~1000K温度范围内的速率常数。计算结果表明,NO_2+HSO反应主通道在298K时的速率常数(7.78×10-13cm3·molecule-1·s-1)与实验值(9.6×10-12cm3·molecule-1·s-1)相近。此外,水分子影响主通道R2(cis-HONO+~1SO)经历了NO_2+H_2O…HSO和NO_2+H_2O…HSO(HSO+NO_2…H_2O)两条反应通道,且两条通道的能垒分别比R2升高了49.97和20.67 kcal·mol-1,说明在实际大气环境中水分子对NO_2+HSO反应几乎没有影响。  相似文献   

6.
在aug-cc-pVTZ基组下采用CCSD(T)和B3LYP方法,研究了H2O2+Cl反应,并考虑在大气中单个水分子对该反应的影响.结果表明,H2O2+Cl反应只存在一条生成产物为HO2+HCl的通道,其表观活化能为10.21kJ·mol-1.加入一分子水后,H2O2+Cl反应的产物并没有发生改变,但是所得势能面却比裸反应复杂得多,经历了RW1、RW2和RW3三条通道.水分子在通道RW1和RW2中对产物生成能垒的降低起显著的负催化作用,而在通道RW3中则起明显的正催化作用.利用经典过渡态理论(TST)并结合Wigner矫正模型计算了216.7-298.2 K温度范围内标题反应的速率常数.结果显示,298.2 K时通道R1的速率常数为1.60×10-13cm3·molecule-1·s-1,与所测实验值非常接近.此外,尽管通道RW3的速率常数kRW3比对应裸反应的速率常数kR1大了46.6-131倍,但该通道的有效速率常数k'RW3却比kR1小了10-14个数量级,表明在实际大气环境中水分子对H2O2+Cl反应几乎没有影响.  相似文献   

7.
在B3LYP/6-311 + G(2d, 2p)水平上计算了MgO + CH_4 → Mg+CH_3OH反应的 单态势能曲线。结果发现MgO和CH_4发生相互作用,首先形成两种类型的分子-分子 复合物(MgOCH_4和OMgCH_4);分子-分子复合物OMgCH_4能发生进一步转化,即 MgO插入到CH_4的C-H键中,产生中间体HOMgCH_3,此中间体在本反应中是能量上最 稳定的构型;它还有可能进一步发生反应,产生原子-分子复合物MgCH_3OH,但其 活化能太高,为299.8kJ·mol~(-1),是整个反应的速率控制步骤;最后一步是 MgCH_3OH放出CH_3OH分子,整个反应放热146.1 kJ·mol~(-1)。  相似文献   

8.
用密度泛函B3PW91/6-311g(d,p)方法对SF5CF3与还原性自由基C2H3反应机理进行了理论研究,优化了反应通道上反应物、过渡态、中间体和产物的几何构型,用内禀反应坐标计算和频率分析确认了过渡态.用精确模型算法G3(MP2)计算了各物种单点能量.研究结果表明:SF5CF3与C2H3自由基反应为多通道反应,C2H3可脱去SF5CF3分子中不同位上的F原子,分别生成3个中间体IM1,IM2和IM3.然后3个中间体发生自分解反应生成产物P1[CF2SF5+C2H3F],P2[CF3SF4(a)+C2H3F]和P3[CF3SF4(b)+C2H3F],其中Path 2和Path 3能垒高度分别为141.9和147.0kJ·mol-1,为竞争反应通道,P2和P3为反应主产物.  相似文献   

9.
用量子化学密度泛函理论(DFT),并结合导体极化连续模型(CPCM)研究了具有潜在抗肿瘤活性的"Keppier型"钌配合物trans-[Ru~ⅢCl_4(2-NH_2-5-Me-STz)2](1)的水解反应过程.首先,在UB3LYP/(LanL2DZ+6-31G(d))理论水平上对水解反应中各平衡构型在气相条件下的有关结构进行全几何优化及振动频率分析;然后,在更高的基组水平LanL2DZ(f)+6-311HG(3df,2dp)上对优化的结构进行单点能计算,并考虑溶剂效应.计算得到水解反应过程中相应的结构特征和详细的反应势能面.对于第一步水解,液相中配合物1的活化能垒为92.9 kJ·mol~(-1),与已经报道的配合物trans.[Ru~ⅢCl_4(2-NH_2-Tz)_2](2)的活化能垒(96.3 kJ·mol~(-1))相接近,并与实验结果相符.对于第二步水解,反应在热力学上优先生成顺式双水解产物,恰如顺铂的水解反应机理一样,存在着所谓"顺式效应".即生成的顺式水解产物有利于其与生物分子靶标的键合,因此,顺式双水解产物在生物反应中有望成为重要的前体药物.本文研究结果有助于深入理解抗癌性Ru(Ⅲ)配合物与相关生物靶标的作用机理.  相似文献   

10.
本文在M06-2X(SMD,H_2O)/6-31++G(d,p)水平下研究了水溶液中过氧甲酸与CH_2XCHCHY(Y=H,X=H,CH_3,Cl及X=H,Y=CH_3,Cl)以及丙烯与ZCOOOH(Z=CF3和CH_3)的环氧化反应。热力学数据表明该环氧化反应是可能的。反应为一步协同机理。反应底物分别为丙烯、丁烯、3-氯丙烯、2-丁烯、氯丙烯时,与过氧甲酸环氧化反应所需要的活化能为:129.7、130.6、139.4、121.2和137.9 kJ·mol~(-1)。过氧酸为过氧乙酸和过氧化三氟乙酸时,与丙烯反应的活化能为136.3和116.7 kJ·mol~(-1)。表明反应在动力学上是可行的。同时,烯烃上取代基X,Y为供电子基团时,反应能垒最小,反应最容易进行。过氧酸上连接吸电基时反应的活化能最低。  相似文献   

11.
在B3LYP/6-311++G(2df,p)水平上优化了标题反应驻点物种的几何构型, 并在相同水平上通过频率计算和内禀反应坐标(IRC)分析对过渡态结构及连接性进行了验证. 采用双水平计算方法HL//B3LYP/6-311++G(2df,p)对所有驻点及部分选择点进行了单点能校正, 构建了CH2SH+NO2反应体系的单重态反应势能剖面. 研究结果表明, CH2SH与NO2反应体系存在4条主要反应通道, 两个自由基中的C与N首先进行单重态耦合, 形成稳定的中间体HSCH2NO2 (a). 中间体a经过C—N键断裂和H(1)—O(2)形成过程生成主要产物P1 (CH2S+trans-HONO), 此过程需克服124.1 kJ•mol-1的能垒. 中间体a也可以经过C—N键断裂及C—O键形成转化为中间体HSCH2ONO (b), 此过程的能垒高达238.34 kJ•mol-1. b再经过一系列的重排异构转化得到产物P2 (CH2S+cis-HONO), P3 (CH2S+HNO2)和P4 (SCH2OH+NO). 所有通道均为放热反应, 反应能分别为-150.37, -148.53, -114.42和-131.56 kJ•mol-1. 标题反应主通道R→a→TSa/P1→P1的表观活化能为-91.82 kJ•mol-1, 此通道在200~3000 K温度区间内表观反应速率常数三参数表达式为kCVT/SCT=8.3×10-40T4.4 exp(12789.3/T) cm3•molecule-1•s-1.  相似文献   

12.
在CCSD(T)//MP2/aug-cc-pVTZ-pp理论水平上,研究了HRnCCH与大气中H2O及NH3分子反应的机理,反应主要包括HRnCCH与HRnOH及HRnNH2之间的转化、H2O和NH3在HRnCCH中的碳碳三键上的加成反应以及HRnCCH与双分子水反应等.结果表明,HRnCCH与H2O反应生成HCCH和HRnOH及HRnCCH与NH3反应生成HCCH和HRnNH2的能垒分别为54.1和75.2 kJ/mol,而生成HRnCHC(OH)H,HRnC(OH)CH2,HRnCHC(NH2)H和HRnC(NH2)CH2的活化能分别为219.6,220.5,174.4和182.4kJ/mol,此结果表明HRnCCH反应性较弱且是稳态存在的.此外,在HRnCCH与H2O反应中加入单个水分子,仍然生成HRnCHC(OH)H,但反应活化能却降低了96.4 kJ/mol,说明水分子对该反应有明显的催化作用.  相似文献   

13.
辛景凡  王文亮  王渭娜  张越  吕剑 《化学学报》2009,67(17):1987-1994
在B3LYP/6-311++G(2df,p)水平上优化了标题反应驻点物种的几何构型, 并在相同水平上通过频率计算和内禀反应坐标(IRC)分析对过渡态结构及连接性进行了验证. 采用双水平计算方法HL//B3LYP/6-311++G(2df,p)对所有驻点及部分选择点进行了单点能校正, 构建了CH2SH+NO2反应体系的单重态反应势能剖面. 研究结果表明, CH2SH与NO2反应体系存在4条主要反应通道, 两个自由基中的C与N首先进行单重态耦合, 形成稳定的中间体HSCH2NO2 (a). 中间体a经过C—N键断裂和H(1)—O(2)形成过程生成主要产物P1 (CH2S+trans-HONO), 此过程需克服124.1 kJ•mol-1的能垒. 中间体a也可以经过C—N键断裂及C—O键形成转化为中间体HSCH2ONO (b), 此过程的能垒高达238.34 kJ•mol-1. b再经过一系列的重排异构转化得到产物P2 (CH2S+cis-HONO), P3 (CH2S+HNO2)和P4 (SCH2OH+NO). 所有通道均为放热反应, 反应能分别为-150.37, -148.53, -114.42和-131.56 kJ•mol-1. 标题反应主通道R→a→TSa/P1→P1的表观活化能为-91.82 kJ•mol-1, 此通道在200~3000 K温度区间内表观反应速率常数三参数表达式为kCVT/SCT=8.3×10-40T4.4 exp(12789.3/T) cm3•molecule-1•s-1.  相似文献   

14.
在CCSD(T)/6-311+G(3df,2p)//M06-2X/6-311+G(3df,2p)水平上研究了(H_2O)n(n=0~2)催化HS和HOCl的反应机理.结果表明,HS与HOCl反应中HS夺取HOCl上的H原子形成产物H_2S和ClO.在无水催化时,该反应存在2种不同的路径(分别经过过渡态TS1和TS2,二者互为顺反结构),对应的能垒分别为100.28和100.91kJ/mol,到达产物(H_2S+ClO)需吸收18.99kJ/mol能量,反应不易发生;在单个水分子参与时,水分子可通过形成弱相互作用或者作为H原子转移桥梁影响反应机理,获得了4种水催化路径,能垒(间于53.97~92.39kJ/mol之间)均低于无水催化过程.同时发现,在反应到达产物前,水分子可以与产物形成中间体IM,IM相对能仅为0.46kJ/mol,有利于产物形成;有2个水分子参与反应时,找到了3条催化路径,最优反应路径过渡态TS7的能垒为45.05kJ/mol,低于无水催化过程,相比单个水分子最优路径能垒(53.97kJ/mol)并无显著降低.  相似文献   

15.
The complex singlet potential energy surface for the reaction of CH2OH with NO2, including 14 minimum isomers and 28 transition states, is explored theoretically at the B3LYP/6-311G(d,p) and Gaussian-3 (single-point) levels. The initial association between CH2OH and NO2 is found to be the carbon-to-nitrogen approach forming an adduct HOCH2NO2 (1) with no barrier, followed by C-N bond rupture along with a concerted H-shift leading to product P1 (CH2O + trans-HONO), which is the most abundant. Much less competitively, 1 can undergo the C-O bond formation along with C-N bond rupture to isomer HOCH2ONO (2), which will take subsequent cis-trans conversion and dissociation to P2 (HOCHO + HNO), P3 (CH2O + HNO2), and P4 (CH2O + cis-HONO) with comparable yields. The obtained species CH2O in primary product P1 is in good agreement with kinetic detection in experiment. Because the intermediate and transition state involved in the most favorable pathway all lie blow the reactants, the CH2OH + NO2 reaction is expected to be rapid, as is confirmed by experiment. These calculations indicate that the title reaction proceeds mostly through singlet pathways; less go through triplet pathways. In addition, a mechanistic comparison is made with the reactions CH3 + NO2 and CH3O + NO2. The present results can lead us to deeply understand the mechanism of the title reaction and may be helpful for understanding NO2-combustion chemistry.  相似文献   

16.
Quantum chemical methods at the Gaussian-2 and -3 levels of theory have been used to investigate the reactions between H(2)S, SO(2), and S(2)O such as might occur in the front-end furnace of the Claus process. The direct reaction between H(2)S and SO(2) occurs via a 5-centered transition state with an initial barrier of approximately 135 kJ mol(-1) and an overall barrier of approximately 153 kJ mol(-1) to produce S(2)O and H(2)O. We indicate approximate values here because there are a number of isomers in the reaction pathway that have barriers slightly different from those quoted. The presence of a water molecule lowers this by approximately 60 kJ mol(-1), but the van der Waals complex required for catalysis by water is thermodynamically unfavorable under the conditions in the Claus reactor. The direct reaction between H(2)S and S(2)O can occur via two possible pathways; the analogous reaction to H(2)S + SO(2) has an initial barrier of approximately 117 kJ mol(-1) and an overall barrier of approximately 126 kJ mol(-1) producing S(3) and H(2)O, and a pathway with a 6-centred transition state has a barrier of approximately 111 kJ mol(-1), producing HSSSOH. Rate constants, including a QRRK analysis of intermediate stabilization, are reported for the kinetic scheme proposed here.  相似文献   

17.
Several intermediates for the CH(3)SH + OH(*) --> CH(3)S(*) + H(2)O reaction were identified using MP2(full) 6-311+g(2df,p) ab initio calculations. An adduct, CH(3)S(H)OH(*), I, with electronic energy 13.63 kJ mol(-1) lower than the reactants, and a transition state, II(double dagger), located 5.14 kJ mol(-1) above I, are identified as the entrance channel for an addition-elimination reaction mechanism. After adding zero-point and thermal energies, DeltaH(r,298) ( degrees )(reactants --> I) = -4.85 kJ mol(-1) and DeltaH(298) (double dagger)(I --> II(double dagger)) = +0.10 kJ mol(-1), which indicates that the potential energy surface is broad and flat near the transition state. The calculated imaginary vibrational frequency of the transition state, 62i cm(-1), is also consistent with an addition-elimination mechanism. These calculations are consistent with experimental observations of the OH(*) + CH(3)SH reaction that favored an addition-elimination mechanism rather than direct hydrogen atom abstraction. An alternative reaction, CH(3)SH + OH(*) --> CH(3)SOH + H(*), with DeltaH(r,298) ( degrees ) = +56.94 kJ mol(-1) was also studied, leading to a determination of DeltaH(f,298) ( degrees )(CH(3)SOH) = -149.8 kJ mol(-1).  相似文献   

18.
在B3LYP/6-311+ +G(2d,2p)水平上,优化得到硝基甲烷CH3NO2的10种异构体和23个异构化反应过渡态,并用G2MP2方法进行了单点能计算.根据计算得到的G2MP2相对能量,探讨了CH3NO2势能面上异构化反应的微观机理.研究表明,反应初始阶段的CH3NO2异构化过程具有较高的能垒,其中CH3NO2的两个主要异构化反应通道,即CH3NO2→CH3ONO和CH3NO2→CH2N(O)OH的活化能分别为270.3和267.8 kJ/mol,均高于CH3NO2的C-N键离解能.因而,从动力学角度考虑, CH3NO2的异构化反应较为不利.  相似文献   

19.
The kinetics of the reactions of 1-and 2-butoxy radicals have been studied using a slow-flow photochemical reactor with GC-FID detection of reactants and products. Branching ratios between decomposition, CH3CH(O*)CH2CH3 --> CH3CHO + C2H5, reaction (7), and reaction with oxygen, CH3CH(O*)CH2CH3+ O2 --> CH3C(O)C2H5+ HO2, reaction (6), for the 2-butoxy radical and between isomerization, CH3CH2CH2CH2O* --> CH2CH2CH2CH2OH, reaction (9), and reaction with oxygen, CH3CH2CH2CH2O* + O2 --> C3H7CHO + HO2, reaction (8), for the 1-butoxy radical were measured as a function of oxygen concentration at atmospheric pressure over the temperature range 250-318 K. Evidence for the formation of a small fraction of chemically activated alkoxy radicals generated from the photolysis of alkyl nitrite precursors and from the exothermic reaction of 2-butyl peroxy radicals with NO was observed. The temperature dependence of the rate constant ratios for a thermalized system is given by k7/k6= 5.4 x 10(26) exp[(-47.4 +/- 2.8 kJ mol(-1))/RT] molecule cm(-3) and k9/k8= 1.98 x 10(23) exp[(-22.6 +/- 3.9 kJ mol(-1))/RT] molecule cm(-3). The results agree well with the available experimental literature data at ambient temperature but the temperature dependence of the rate constant ratios is weaker than in current recommendations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号