首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Density functional theory computations and pulsed-ionization high-pressure mass spectrometry experiments have been used to explore the potential energy surfaces for gas-phase S(N)2 reactions between halide ions and trifluoromethyl halides, X(-) + CF(3)Y --> Y(-) + CF(3)X. Structures of neutrals, ion-molecule complexes, and transition states show the possibility of two mechanisms: back- and front-side attack. From pulsed-ionization high-pressure mass spectrometry, enthalpy and entropy changes for the equilibrium clustering reactions for the formation of Cl(-)(BrCF(3)) (-16.5 +/- 0.2 kcal mol(-1) and -24.5 +/- 1 cal mol(-1) K(-1)), Cl(-)(ICF(3)) (-23.6 +/- 0.2 kcal mol(-1)), and Br(-)(BrCF(3)) (-13.9 +/- 0.2 kcal mol(-1) and -22.2 +/- 1 cal mol(-1) K(-1)) have been determined. These are in good to excellent agreement with computations at the B3LYP/6-311+G(3df)//B3LYP/6-311+G(d) level of theory. It is shown that complex formation takes place by a front-side attack complex, while the lowest energy S(N)2 reaction proceeds through a back-side attack transition state. This latter mechanism involves a potential energy profile which closely resembles a condensed phase S(N)2 reaction energy profile. It is also shown that the Cl(-) + CF(3)Br --> Br(-) + CF(3)Cl S(N)2 reaction can be interpreted using Marcus theory, in which case the reaction is described as being initiated by electron transfer. A potential energy surface at the B3LYP/6-311+G(d) level of theory confirms that the F(-) + CF(3)Br --> Br(-) + CF(4) S(N)2 reaction proceeds through a Walden inversion transition state.  相似文献   

2.
Density functional theory (BLYP, B3LYP, B3P86, B3PW91) with the 6-31+G(d,p), 6-311+G(d,p), and cc-pVTZ basis sets has been used to calculate structural parameters, relative energies, and vibrational spectra of 2-pyrimidinethiol (1) and 2(1H)-pyrimidinethione (2) and their hydrogen-bonded homodimers (C(2) 3, C(2h) [4](double dagger), C(2h) 5), monohydrates, and dihydrates and a heterodimer (6). Several transition state structures proposed for the tautomerization process have also been examined. At the B3PW91/6-311+G(d,p)//B3PW91/6-31+G(d,p) level of theory 2-pyrimidinethiol (1) is predicted to be 3.41 kcal/mol more stable (E(rel)) than 2(1H)-pyrimidinethione (2) in the gas phase and 2 is predicted to be 6.47 kcal/mol more stable than 1 in aqueous medium. An unfavorable planar intramolecular strained four center transition state (TS1) for the tautomerization of 1 and 2 in the gas-phase lies 29.07 kcal/mol higher in energy than 2-pyrimidinethiol (1). The C(2) 2-pyrimidinethiol dimer (3) is 6.84 kcal/mol lower in energy than the C(2) homodimer transition state structure ([11](double dagger)) that connects dimers 3 and 4. Transition state [11](double dagger) provides a facile pathway for tautomerization between 1 and 2 in the gas phase (monomer-dimer promoted tautomerization). The hydrogen bonded 2-pyrimidinethiol- - -H(2)O and 2-pyrimidinethiol- - -2H(2)O structures are predicted to be 1.27 and 1.55 kcal/mol, respectively, higher in energy than 2(1H)-pyrimidinethione- - -H(2)O and 2(1H)-pyrimidinethione- - -2H(2)O. Water promoted tautomerization via cyclic transition states involving one water molecule (TS- - -H(2)O, [12](double dagger)) and two water molecules (TS- - -2H(2)O, [13](double dagger)) lie 11.42 and 11.44 kcal/mol, respectively, higher in energy than 2-pyrimidinethiol- - -H(2)O and 2-pyrimidinethiol- - -2H(2)O. Thus, the hydrated transition states [12](double dagger) and [13](double dagger) are involved in the tautomerism between 1 and 2 in aqueous medium.  相似文献   

3.
We have recently advanced the aromaticity concept into all-metal molecules containing Al(4)(2-), XAl(3)(-), Ga(4)(2-), In(4)(2-), Hg(4)(6-), Al(3)(-), and Ga(3)(-) aromatic units. All these systems are electron deficient species compared to the corresponding aromatic hydrocarbons. The electron deficiency results in an interesting new feature in all-metal aromatic systems, which should be considered as having both pi- and sigma-aromaticity, and that should result in their additional stability. In this work, we obtain crude evaluations of the resonance energies for Na(2)Al(4) and Na(2)Ga(4) all-metal aromatic molecules. The resonance energies were found to be unusually high: 30 kcal/mol (B3LYP/6-311+G*) and 48 kcal/mol (CCSD(T)/6-311+G(2df)) for Na(2)Al(4) and 21 kcal/mol (B3LYP/6-311+G*) for Na(2)Ga(4) compared to 20 kcal/mol in benzene. We believe that the high resonance energies in Na(2)Al(4) and in Na(2)Ga(4) are due to the presence of three completely delocalized bonds, one pi-bond and two sigma-bonds, thus confirming the presence of pi- and sigma-aromaticity.  相似文献   

4.
Analyses of isodesmic reactions for singlet 7-carbenanorbornene (4S), 8-carbena-endo-tricyclo[3.2.1.0(2,4)]octane (5S), 3-carbenabicyclo[3.1.0]hexane (3S), 2-carbenanorbornene 6S, and 2-carbenabicyclooctadiene 7S at the B3LYP/6-311+G(3df, 2p)//B3LYP/6-31G level provide stabilization energies of 13.83, 13. 50, 3.00, -2.22, and -3.01 kcal/mol, respectively. The C7 carbene in 4S and the C8 carbene center in 5S are strongly bent toward the double bond and cyclopropane ring, respectively, in contrast to their related triplets, 4T and 5T and parent hydrocarbons. The geometric change for 3S compared to 3T or to parent bicyclo[3.1. 0]hexane is minimal. Comparison of the stability of 6S with 2-carbenanorbornane and the geometry of 6S with that of 6T and also with the singlet and triplet 2-carbenanorbornane suggests very modest bridging. The stabilization energy and geometry of 2-carbenabicyclooctadiene 7 resemble antihomoaromatic bicyclooctadienyl cation 9 rather than the related homoaromatic bicyclooctadienyl anion 8. The diamagnetic susceptibility exhaltations (Deltachi) of 3, 4, 5, and 7, calculated at the B3LYP/6-311+G(2d,p)//B3LYP/6-31G level, are -0.7, 22.7, 26.0, and -10.3 cgs-ppm, respectively. The singlet-triplet energy differences, DeltaE(TS), for carbenacyclohexane, carbenacyclopentane, 3, 4, 5, 6, 7, and 2-carbenabicyclo[3.2.1]oct-3-ene at the B3LYP/6-311+G(3df, 2p)//B3LYP/6-31G level are 3.4, 10.3, 8.8, 27.1, 25.9, 12.7, -4.0, and -0.9 kcal/mol, respectively.  相似文献   

5.
The results of a theoretical study of the molecular structure and conformational mobilities of the peroxynitrate CF(2)BrCFBrOONO(2) and its radical decomposition product CF(2)BrCFBrOO are reported in this paper. The most stable structures were calculated from ab initio G3(MP2)B3 and G4(MP2) methods and from density functional theory at the B3LYP/6-311+G(d) and B3LYP/6-311+G(3df) levels of theory. The equilibrium conformation of CF(2)BrCFBrOONO(2) indicates that the bromine atoms lie in position anti to each other and possess a COON dihedral angle of 114°. A quantum statistical analysis shows that about 40% of the internal rotors can freely rotate at room temperature. Our best values for the standard enthalpies of formation of CF(2)BrCFBrOONO(2) and CF(2)BrCFBrOO at 298 K obtained from isodesmic reactions at the G3(MP2)//B3LYP/6-311+G(3df) level of theory are -144.7 and -127.0 kcal mol(-1). From these values and the enthalpy of formation of the NO(2) radical, a CF(2)BrCFBrOO-NO(2) bond dissociation enthalpy of 26.0 ± 2 kcal mol(-1) was estimated.  相似文献   

6.
Hydrogen-bonded gas-phase molecular clusters of dihydrogen trioxide (HOOOH) have been investigated using DFT (B3LYP/6-311++G(3df,3pd)) and MP2/6-311++G(3df,3pd) methods. The binding energies, vibrational frequencies, and dipole moments for the various dimer, trimer, and tetramer structures, in which HOOOH acts as a proton donor as well as an acceptor, are reported. The stronger binding interaction in the HOOOH dimer, as compared to that in the analogous cyclic structure of the HOOH dimer, indicates that dihydrogen trioxide is a stronger acid than hydrogen peroxide. A new decomposition pathway for HOOOH was explored. Decomposition occurs via an eight-membered ring transition state for the intermolecular (slightly asynchronous) transfer of two protons between the HOOOH molecules, which form a cyclic dimer, to produce water and singlet oxygen (Delta (1)O 2). This autocatalytic decomposition appears to explain a relatively fast decomposition (Delta H a(298K) = 19.9 kcal/mol, B3LYP/6-311+G(d,p)) of HOOOH in nonpolar (inert) solvents, which might even compete with the water-assisted decomposition of this simplest of polyoxides (Delta H a(298K) = 18.8 kcal/mol for (H 2O) 2-assisted decomposition) in more polar solvents. The formation of relatively strongly hydrogen-bonded complexes between HOOOH and organic oxygen bases, HOOOH-B (B = acetone and dimethyl ether), strongly retards the decomposition in these bases as solvents, most likely by preventing such a proton transfer.  相似文献   

7.
The kinetic properties of the carbon-fluorine radicals are little understood except those of CFn (n =1-3). In this article, a detailed mechanistic study was reported on the gas-phase reaction between the simplest pi-bonded C2F radical and water as the first attempt to understand the chemical reactivity of the C2F radical. Various reaction channels are considered. The most kinetically competitive channel is the quasi-direct hydrogen-abstraction route forming P5 HCCF + OH. At the CCSD(T)/6-311+G(2d,2p)//B3LYP/6-311G(d,p)+ZPVE, CCSD(T)/6-311+G(3df,2p)//QCISD/6-311G(d,p)+ZPVE and Gaussian-3//B3LYP/6-31G(d) levels, the overall H-abstraction barriers (4.5, 4.7, and 4.2 kcal/mol) for the C2F + H2O reaction are comparable to the corresponding values (5.5, 3.7, and 5.7 kcal/mol) for the analogous C2H + H2O reaction. This suggests that C2F is a reactive radical like the extensively studied C2H, in contrast to the situation of the CF and CF2 radicals that have much lower reactivity than the corresponding hydrocarbon species. Thus, the C2F radical is expected to play an important role in the combustion processes of the carbon-fluorine chemistry. Furthermore, addition of a second H2O can catalyze the reaction with the H-abstraction barrier significantly reduced to a marginally zero value (0.5 kcal/mol). This is also indicative of the potential relevance of the title reactions in the low-temperature atmospheric chemistry.  相似文献   

8.
In this paper a new scheme was proposed to calculate the intramolecular hydrogen-bonding energies in peptides and was applied to calculate the intramolecular seven-membered ring N-H...O=C hydrogen-bonding energies of the glycine and alanine peptides. The density-functional theory B3LYP6-31G(d) and B3LYP6-311G(d,p) methods and the second-order Moller-Plesset perturbation theory MP26-31G(d) method were used to calculate the optimal geometries and frequencies of glycine and alanine peptides and related structures. MP26-311++G(d,p), MP26-311++G(3df,2p), and MP2/aug-cc-pVTZ methods were then used to evaluate the single-point energies. It was found that the B3LYP6-31G(d), MP26-31G(d), and B3LYP6-311G(d,p) methods yield almost similar structural parameters for the conformers of the glycine and alanine dipeptides. MP2/aug-cc-pVTZ predicts that the intramolecular seven-membered ring N-H...O=C hydrogen-bonding strength has a value of 5.54 kcal/mol in glycine dipeptide and 5.73 and 5.19 kcal/mol in alanine dipeptides, while the steric repulsive interactions of the seven-membered ring conformers are 4.13 kcal/mol in glycine dipeptide and 6.62 and 3.71 kcal/mol in alanine dipeptides. It was also found that MP26-311++G(3df,2p) gives as accurate intramolecular N-H...O=C hydrogen-bonding energies and steric repulsive interactions as the much more costly MP2/aug-cc-pVTZ does.  相似文献   

9.
Maleimide serves as an important starting material in the synthesis of drugs and enzyme inhibitors. In the present paper, knowing the importance of tautomerization in maleimide for its drug action, potential energy surface of maleimide is studied and its tautomerization has been discussed and compared with tautomerization of formamide. Gas phase tautomerization of maleimide requires large amount of energy (23·21 kcal/mol) in comparison to formamide (15·05 kcal/mol) at HF/6-31+G* level. Thus making the proton transfer reaction a difficult process in gas phase. Water molecule lowers the energy barrier of tautomerization thus facilitating the tautomerization of maleimide to 5-hydroxy-pyrrol-2-one. Water assisted tautomerization of maleimide requires 19·60 kcal/mol energy at HF/6-31+G* and 17·63 kcal/mol energy at B3LYP/6-31+G* level, a decrease of 3·61 and 5·96 kcal/mol over gas phase tautomerization. Whereas, tautomerization of formamide requires 14·16 and 12·84 kcal/mol energy, a decrease of 0·89 and 2·01 kcal/mol energy over gas phase tautomerization at HF/6-31+G* and B3LYP/6-31+G* level, respectively. Water-assisted tautomerization in maleimide and formamide showed that difference in energy barrier reduces to 2·83 kcal/mol from 10·41 kcal/mol (in gas phase) at B3LYP level, which resulted that maleimide readily undergoes tautomerization in water molecule.  相似文献   

10.
Ab initio calculations at MP2/6-311++G(2d,2p) and MP2/6-311++G(3df,3pd) computational levels have been used to analyze the interactions between nitrous oxide and a series of small and large molecules that act simultaneously as hydrogen bond donors and electron donors. The basis set superposition error (BSSE) and zero point energy (ZPE) corrected binding energies of small N2O complexes (H2O, NH3, HOOH, HOO*, HONH2, HCO2H, H2CO, HCONH2, H2CNH, HC(NH)NH2, SH2, H2CS, HCSOH, HCSNH2) vary between -0.93 and -2.90 kcal/mol at MP2/6-311++G(3df,3pd) level, and for eight large complexes of N2O they vary between -2.98 and -3.37 kcal/mol at the MP2/6-311++G(2d,2p) level. The most strongly bound among small N2O complexes (HCSNH2-N2O) contains a NH..N bond, along with S-->N interactions, and the most unstable (H2S-N2O) contains just S-->N interactions. The electron density properties have been analyzed within the atoms in molecules (AIM) methodology. Results of the present study open a window into the nature of the interactions between N2O with other molecular moieties and open the possibility to design N2O abiotic receptors.  相似文献   

11.
Malar EJ 《Inorganic chemistry》2003,42(12):3873-3883
Stability in penta- and decaphospha analogues of lithocene anion and beryllocene is investigated by complete structural optimization at the B3LYP/6-31G level. Natural bond orbital analysis is carried out to examine the bonding between the metal and the ligands. The heterolytic dissociation energies of 667 and 608 kcal/mol predicted by B3LYP/6-311+G//B3LYP/6-31G calculations for CpBeP(5) and (P(5))(2)Be are comparable with the observed value of 635 +/- 15 kcal/mol in ferrocene. The high stability in CpBeP(5) and (P(5))(2)Be shows that these species are isolable under appropriate conditions. Lithocene anion and its phospha analogues possess lower stability toward dissociation into ionic fragments. A novel observation of the present study is that CpBeP(5) and (P(5))(2)Be have lowest energies when the two planar ligands are arranged perpendicular to each other such that one of the ligands, cyclo-P(5), is eta(1)-coordinated while the second ligand is eta(5)-coordinated to Be. The resulting structure having C(s)() point group (denoted as C(s)()(p)) is predicted to be 22 and 28 kcal/mol lower than the staggered sandwich geometry in CpBeP(5) and (P(5))(2)Be, respectively, at the B3LYP/6-311+G//B3LYP/6-31G level. In the analogous lithocene anions [CpLiP(5)](-) and [(P(5))(2)Li](-) also the C(s)()(p) structures are found to be the lowest energy structures, though their relative stabilities are small. We also characterized the geometry with both ligands eta(1)-coordinated to the metal in a linear arrangement having the D(2)(h)() point group in the decaphospha analogues [(P(5))(2)Li](-) and (P(5))(2)Be. This structure is found to be higher in energy than the C(s)()(p) structure. The D(2)(h)() structure could not be located as a potential minimum in the biscyclopentadienyl complexes and their pentaphospha analogues. Both the C(s)()(p) and D(2)(h)() structures are characterized for the first time in metallocenes. The D(2)(h)() structure seems to be a unique feature in the decaphospha metallocenes under consideration. Covalent bond formation between beryllium and phosphorus atom P(1) of eta(1)-(cyclo-P(5)) is more pronounced (bond orders 0.43-0.49) than that between Be and C(1) of eta(1)-Cp (bond orders 0.24-0.27). Though both eta(1)-coordinated cyclo-P(5) and Cp exhibit C(2)(v)() point groups, bond alternation is less pronounced in the former. The Wiberg P-P bond orders in the eta(1)-(cyclo-P(5)) of CpBeP(5) and (P(5))(2)Be having C(s)()(p) structures are in the range 1.29-1.47. These ring bond orders indicate that the P(5) ring retains aromaticity to a large extent in the eta(1)-mode of bonding with Be. Second-order perturbational energy analysis of the Fock matrix in the natural bond orbital basis reveals that there is a significant stabilizing interaction of approximately 123 kcal/mol between the lone pair orbital of P(1) and the 2s orbital of Be in the C(s)()(p) structures.  相似文献   

12.
Combined with the integral equation formalism polarized continuum model (IEFPCM), the hydride affinities of 96 various acylcarbenium ions in the gas phase and CH(3)CN were estimated by using the B3LYP/6-31+G(d)//B3LYP/6-31+G(d), B3LYP/6-311++G(2df,2p)//B3LYP/6-31+G(d), and BLYP/6-311++G(2df,2p)//B3LYP/6-31+G(d) methods for the first time. The results show that the combination of the BLYP/6-311++G(2df,2p)//B3LYP/6-31+G(d) method and IEFPCM could successfully predict the hydride affinities of arylcarbeniums in MeCN with a precision of about 3 kcal/mol. On the basis of the calculated results from the BLYP method, it can be found that the hydride affinity scale of the 96 arylcarbeniums in MeCN ranges from -130.76 kcal/mol for NO(2)-PhCH(+)-CN to -63.02 kcal/mol for p-(Me)(2)N-PhCH(+)-N(Me)(2), suggesting most of the arylcarbeniums are good hydride acceptors. Examination of the effect of the number of phenyl rings attached to the carbeniums on the hydride affinities shows that the increase of the hydride affinities takes place linearly with increasing number of benzene rings in the arylcarbeniums. Analyzing the effect of the substituents on the hydride affinities of arylcarbeniums indicates that electron-donating groups decrease the hydride affinities and electron-withdrawing groups show the opposite effect. The hydride affinities of arylcarbeniums are linearly dependent on the sum of the Hammett substituent parameters σ(p)(+). Inspection of the correlation of the solution-phase hydride affinities with gas-phase hydride affinities and aqueous-phase pK(R)(+) values reveals a remarkably good correspondence of ΔG(H(-)A)(R(+)) with both the gas-phase relative hydride affinities only if the α substituents X have no large electron-donating or -withdrawing properties and the pK(R)(+) values even though the media are dramatically different. The solution-phase hydride affinities also have a linear relationship with the electrophilicity parameter E, and this dependence can certainly serve as one of the most effective ways to estimate the new E values from ΔG(H(-)A)(R(+)) or vice versa. Combining the hydride affinities and the reduction potentials of the arylcarbeniums, we obtained the bond homolytic dissociation Gibbs free energy changes of the C-H bonds in the corresponding hydride adducts in acetonitrile, ΔG(HD)(RH), and found that the effects of the substituent on ΔG(HD)(RH) are very small. Simple thermodynamic analytic platforms for the three C-H cleavage modes were constructed. It is evident that the present work would be helpful in understanding the nature of the stabilities of the carbeniums and mechanisms of the hydride transfers between carbeniums and other hydride donors.  相似文献   

13.
辛景凡  王文亮  王渭娜  张越  吕剑 《化学学报》2009,67(17):1987-1994
在B3LYP/6-311++G(2df,p)水平上优化了标题反应驻点物种的几何构型, 并在相同水平上通过频率计算和内禀反应坐标(IRC)分析对过渡态结构及连接性进行了验证. 采用双水平计算方法HL//B3LYP/6-311++G(2df,p)对所有驻点及部分选择点进行了单点能校正, 构建了CH2SH+NO2反应体系的单重态反应势能剖面. 研究结果表明, CH2SH与NO2反应体系存在4条主要反应通道, 两个自由基中的C与N首先进行单重态耦合, 形成稳定的中间体HSCH2NO2 (a). 中间体a经过C—N键断裂和H(1)—O(2)形成过程生成主要产物P1 (CH2S+trans-HONO), 此过程需克服124.1 kJ•mol-1的能垒. 中间体a也可以经过C—N键断裂及C—O键形成转化为中间体HSCH2ONO (b), 此过程的能垒高达238.34 kJ•mol-1. b再经过一系列的重排异构转化得到产物P2 (CH2S+cis-HONO), P3 (CH2S+HNO2)和P4 (SCH2OH+NO). 所有通道均为放热反应, 反应能分别为-150.37, -148.53, -114.42和-131.56 kJ•mol-1. 标题反应主通道R→a→TSa/P1→P1的表观活化能为-91.82 kJ•mol-1, 此通道在200~3000 K温度区间内表观反应速率常数三参数表达式为kCVT/SCT=8.3×10-40T4.4 exp(12789.3/T) cm3•molecule-1•s-1.  相似文献   

14.
The reactivity of the alkylating agent o-quinone methide (o-QM) toward NH(3), H(2)O, and H(2)S, prototypes of nitrogen-, oxygen-, and sulfur-centered nucleophiles, has been studied by quantum chemical methods in the frame of DF theory (B3LYP) in reactions modeling its reactivity in water with biological nucleophiles. The computational analysis explores the reaction of NH(3), H(2)O, and H(2)S with o-QM, both free and H-bonded to a discrete water molecule, with the aim to rationalize the specific and general effect of the solvent on o-QM reactivity. Optimizations of stationary points were done at the B3LYP level using several basis sets [6-31G(d), 6-311+G(d,p), adding d and f functions to the S atom, 6-311+G(d,p),S(2df), and AUG-cc-pVTZ]. The activation energies calculated for the addition reactions were found to be reduced by the assistance of a water molecule, which makes easier the proton-transfer process in these alkylation reactions by at least 12.9, 10.5, and 6.0 kcal mol(-1) [at the B3LYP/AUG-cc-pVTZ//B3LYP/6-311+G(d,p) level], for ammonia, water, and hydrogen sulfide, respectively. A proper comparison of an uncatalyzed with a water-catalyzed reaction mechanism has been made on the basis of activation Gibbs free energies. In gas-phase alkylation of ammonia and water by o-QM, reactions assisted by an additional water molecule H-bonded to o-QM (water-catalyzed mechanism) are favored over their uncatalyzed counterparts by 5.6 and 4.0 kcal mol(-1) [at the B3LYP/6-311+G(d,p) level], respectively. In contrast, the hydrogen sulfide alkylation reaction in the gas phase shows a slight preference for a direct alkylation without water assistance, even though the free energy difference (DeltaDeltaG(#)) between the two reaction mechanisms is very small (by 1.0 kcal mol(-1) at the B3LYP/6-311+G(d,p),S(2df) level of theory). The bulk solvent effect, evaluated by the C-PCM model, significantly modifies the relative importance of the uncatalyzed and water-assisted alkylation mechanism by o-QM in comparison to the case in the gas phase. Unexpectedly, the uncatalyzed mechanism becomes highly favored over the catalyzed one in the alkylation reaction of ammonia (by 7.0 kcal mol(-1)) and hydrogen sulfide (by 4.0 kcal mol(-1)). In contrast, activation induced by water complexation still plays an important role in the o-QM hydration reaction in water as solvent.  相似文献   

15.
The structures, energetics, and aromatic character of dicyclobuta[de,ij]naphthalene, 1, dicyclopenta[cd,gh]pentalene, 2, dihydrodicyclobuta[de,ij]naphthalene, 3, and dihydrocyclopenta[cd,gh]pentalene, 4, have been examined at the B3LYP/6-311++G//B3LYP/6-31G level of theory. All molecules are bowl-shaped, and the pentalene isomers, 2 and 4, are most stable. A comparison with other C(12)H(6) and C(12)H(8) isomers indicates that 2 is approximately 25 kcal/mol less stable than 1,5,9-tridehydro[12]annulene and 4 is approximately 100 kcal/mol higher in energy than acenaphthylene, both of which are synthetically accessible. The transition state structure for bowl-to-bowl inversion of 1 is planar (D(2)(h)()) and lies 30.9 kcal/mol higher in energy than the ground state; the transition state for inversion of 2 is C(2)(h)() and lies 46.6 kcal/mol higher in energy. Symmetry considerations, bond length alternations, and NICS values (a magnetic criterion) all indicate that the ground states of 1, 3, and 4 are very aromatic; however, HOMA values (a measure of bond delocalization) indicate that 3S and 4S are aromatic but that 1S is less so. NICS values for the ground state of 2 strongly indicate aromaticity; however, bond localization, symmetry, and HOMA values argue otherwise.  相似文献   

16.
The structures and relative energies of the conformers of phenylcyclohexane, and 1-methyl-1-phenylcyclohexane have been calculated at theoretical levels including HF/6-31G, B3LYP/6-311G, MP2/6-311G, MP2/6-311(2df,p), QCISD/6-311G, and QCISD/6-311G(2df,p). The latter gives conformational enthalpy (DeltaH degrees ), entropy (DeltaS degrees ), and free energy (DeltaG degrees ) values for phenylcyclohexane that are in excellent agreement with the experimental data. The calculations for 1-methyl-1-phenylcyclohexane find a free energy difference of 1.0 kcal/mol at -100 degrees C, favoring the conformation having an axial phenyl group, that is in only modest agreement with the experimental value of 0.32 +/- 0.04 kcal/mol. The origin of the phenyl rotational profiles for the conformers of phenylcyclohexane and 1-methyl-1-phenylcyclohexane is discussed.  相似文献   

17.
The cheletropic decompositions of 1-nitrosoaziridine (1), 1-nitroso-Delta(3)-pyrroline (2), 7-nitroso-7-azabicyclo[2.2. 1]hepta-2,5-diene (3), and 6-nitroso-6-azabicyclo[2.1.1]hexa-4-ene (4) have been studied theoretically using high level ab initio computations. Activation parameters of the decomposition of nitrosoaziridine 1 were obtained experimentally in heptane (DeltaH()(298) = 18.6 kcal mol(-)(1), DeltaS()(298) = -7.6 cal mol(-)(1) K(-)(1)) and methanol (20.3 kcal mol(-)(1), 0.3 cal mol(-)(1) K(-)(1)). Among employed theoretical methods (B3LYP, MP2, CCD, CCSD(T)//CCD), the B3LYP method in conjunction with 6-31+G, 6-311+G, and 6-311++G(3df,2pd) basis sets gives the best agreement with experimental data. It was found that typical N-nitrosoheterocycles 2-4 which have high N-N bond rotation barriers (>16 kcal mol(-)(1)) extrude nitrous oxide via a highly asynchronous transition state with a planar ring nitrogen atom. Nitrosoaziridine 1, with a low rotation barrier (<9 kcal mol(-)(1)) represents a special case. This compound can eliminate N(2)O via a low energy linear synperiplanar transition state (DeltaH()(298) = 20.6 kcal mol(-)(1), DeltaS()(298) = 2.5 cal mol(-)(1) K(-)(1)). Two higher energy transition states are also available. The B3LYP activation barriers of the cheletropic fragmentation of nitrosoheterocycles 2-4 decrease in the series: 2 (58 kcal mol(-)(1)) > 3 (18 kcal mol(-)(1)) > 4 (12) kcal mol(-)(1). The relative strain energies increase in the same order: 2 (0 kcal mol(-)(1)) < 3 (39 kcal mol(-)(1)) < 4 (52 kcal mol(-)(1)). Comparison of the relative energies of 2-4 and their transition states on a common scale where the energy of nitrosopyrroline 2 is assumed as reference indicates that the thermal stability of the cyclic nitrosoamines toward cheletropic decomposition is almost entirely determined by the ring strain.  相似文献   

18.
F原子与瞬态自由基CH_2SH反应的理论研究   总被引:1,自引:0,他引:1  
胡正发  冯霞  王振亚  周士康 《化学学报》2002,60(10):1760-1767
用量子化学从头算和密度泛函理论(DFT)对F原子与自由基CH_2SH在势能面上 的反应进行了研究。在B3LYP/6-311G水平上计算出了各物种的优化构型、振动频率 和零点振动能(ZPVE);各物种的总能量由B3LYP/6-311 + G(2df, pd)//B3LYP/6- 311G计算,另外对反应物和产物还计算了其G3能量。结果表明:首先F通过与C或S 结合的两种途径与CH_2SH相配位,再通过H(4)原子转移形成甲基,然后甲基再旋 转,甲基中H(4)原子最终与F结合,反应产物为HF和CH_2S。反应为放热反应,分 别为ΔH_r = -370.7 kJ/mol (DFT)和-396.94 kJ/mol (G3)。此外依据计算出的反 应热,可得自由基·CH_2SH的生成热Δ_fH°_(298.15) = 146.44 kJ/mol (DFT), 而Δ_fH°_0 = 167.36 kJ/mol (G3)。它们与以前的实验和理论值是一致的。  相似文献   

19.
The structural and vibrational properties of the transition state of the N(2)O + X (X = Cl,Br) reactions have been characterized by ab initio methods using density functional theory. We have employed Becke's hybrid functional (B3LYP), and transition state optimizations were performed with 6-31G(d), 6-311G(2d,2p), 6-311+G(3d,2p), and 6-311+G(3df,2p) basis sets. For the chlorine atom reaction the coupled-cluster method (CCSD(T)) with 6-31G(d) basis set was also used. All calculations resulted in transition state structures with a planar cis arrangement of atoms for both reactions. The geometrical parameters of transition states at B3LYP are very similar, and the reaction coordinates involve mainly the breaking of the N-O bond. At CCSD(T)/6-31G(d) level a contribution of the O-Cl forming bond is also observed in the reaction coordinate. In addition, several highly accurate ab initio composite methods of Gaussian-n (G1, G2, G3), their variations (G2(MP2), G3//B3LYP), and complete basis set (CBS-Q, CBS-Q//B3LYP) series of models were applied to compute reaction energetics. All model chemistries predict exothermic reactions. The G3 and G2 methods result in the smallest deviations from experiment, 1.8 and 0 kcal mol(-1), for the enthalpies of reaction for N(2)O reaction with chlorine and bromine, respectively. The G3//B3LYP and G1 methods perform best among the composite methods in predicting energies of the transition state, with a deviation of 1.9 and 3.0 kcal mol(-1), respectively, in the activation energies for the above processes. However, the B3LYP/6-311+G(3df,2p) method gives smaller deviations of 0.4 and -1.0 kcal mol(-1), respectively. The performance of the methodologies applied in predicting transition state energies was analyzed.  相似文献   

20.
Polyhedral water clusters (PWCs) are cage-like (H2O)n clusters where every O participates in exactly three H bonds. For a database of 83 PWCs, 8 < or = n < or = 20, geometry was optimized and zero point energy (ZPE) was calculated at the B3LYP/6-311++G** level. ZPE correlates negatively with electronic energy (E0): each increase of 1 kcal/mol in E0 corresponds to a decrease of about 0.11 kcal/mol in ZPE. For each n, a set of four connectivity parameters accounts for 98% or more of the variance in ZPE. Linear regression of ZPE against n and this set gives an RMS error of 0.13 kcal/mol. The contributions to ZPE from stretch modes only (ZPE(S)) and from torsional modes only (ZPE(T)) also correlate strongly with E0 and with each other.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号