首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 218 毫秒
1.
研制了一种新型的带有阻抗性电极的TGEM——RETGEM(Thick GEM with Resistive Electrodes)探测器, 阻抗性电极可以有效地保护探测器和前端电子学免于偶尔放电的损伤。 对RETGEM探测器进行了初步测试, 其中包括计数率、能量分辨、增益以及打火率。 结果表明, 探测器达到了设计的基本要求。 In this study we present preliminary results from a new detector: a thick gaseous electron multiplier(GEM) with resistive electrodes. The resistive electrodes protect the detector and the front end electronics from damage by occasional discharges. In different gas mixtures, we test Thick GEM with Resistive Electrodes(RETGEM) detector for the first time, including counting rate, energy resolution, effective gain, and discharge probability. The results can satisfy the basic demand of RETGEM detector design.  相似文献   

2.
The two-dimensional interpolating readout, a new readout concept based on resistive anode structure, was studied for the micro-pattern gaseous detector. Within its high spatial resolution, the interpolating resistive readout structure leads to an enormous reduction of electronic channels compared with pure pixel devices, and also makes the detector more reliable and robust, which is attributed to its resistive anode relieving discharge. A GEM (gaseous electron multiplier) detector with 2D interpolating resistive readout structure was set up and the performance of the detector was studied with 55Fe 5.9 keV X-ray. The detector worked stably at the gain up to 3.5 × 104 without any discharge. An energy resolution of about 19%, and a spatial resolution of about 219 μm (FWHM) were reached, and good imaging performance was also obtained.  相似文献   

3.
A Gas Electron Multiplier (GEM) detector with an effective area of 300 mm×300 mm has been constructed using a novel self-stretching technique, which allows a highly flexible and efficient GEM detector assembly free of glue or spacers. This makes the re-opening and repair of the GEM detectors possible and significantly reduces the scrap rate in the mass production of large-area GEM detectors. With the technique, the assembly time can be limited to a few hours, a factor of ten improvement compared to that using gluing techniques. The details of design and assembly procedure of the 300 mm×300 mm GEM detector are described in this paper. This detector was tested with 8 keV X-rays for the effective gain, energy resolution and performance uniformity. The results show that the typical energy resolution is 20% at an effective gain of about 10^4, with fairly good uniformity.  相似文献   

4.
To reduce the discharge of the standard bulk Micromegas and GEM detectors, a GEM-Micromegas detector was developed at the Institute of High Energy Physics. Taking into account the advantages of the two detectors, one GEM foil was set as a preamplifier on the mesh of Micromegas in the structure and the GEM preamplification decreased the working voltage of Micromegas to significantly reduce the effect of the discharge. At the same gain, the spark probability of the GEM-Micromegas detector can be reduced to a factor 0.01 compared to the standard Micromegas detector, and an even higher gain could be obtained. This paper describes the performance of the X-ray beam detector that was studied at 1W2B Laboratory of Beijing Synchrotron Radiation Facility. Finally, the result of the energy resolution under various X-ray energies was given in different working gases. This indicates that the GEM-Micromegas detector has an energy response capability in an energy range from 6 keV to 20 keV and it could work better than the standard bulk-Micromegas.  相似文献   

5.
随着二维GEM气体探测器在X射线成像探测领域的应用, 三级GEM的探测结构和电场均匀性带来的增益一致性修正问题, 成为需要深入研究的课题内容。 介绍了有效探测面积为100 mm×100 mm的三级倍增GEM探测器, 共采用100路阵列读出, 每路读出Pad面积为9.5 mm×9.5 mm。 测量了55Fe放射源准直入射的全能峰谱。 实验表明, 随着时间的变化, 探测器的增益基本上保持稳定; 随气流的增大, 增益由变化明显到变化不大。 GEM探测器各个阵列单元的增益一致性良好(>80%); 能量分辨率在0.18~0.22之间, 运用最小二乘法拟合给出增益一致性的修正结果, 修正后相差约0.1, 为GEM气体探测器的增益一致性修正方法提供了参考方案。 With the application of the two dimensional GEM gaseous detector in X ray imaging, the correction method of gain uniformity caused by triple GEM avalanche structures and electric field uniformity should be studied. The paper reported the study of the triple GEM detector with effective area 100 mm×100 mm used the Pad’s size of 9.5 mm×9.5 mm. In the test, 100 readout channels were designed. Results showed that gain remained stable over time; as air flow increases, gain from increases obviously to changes very little. Particularly, triple GEM’s gain uniformity was very good (more than 80%) and the range of energy resolution was from 0.18 to 0.22. To improve gain consistency of results, the difference value revised was obtained to be about 0.1 by the least square method. It provided a better method to improve gain uniformity of GEM detector.  相似文献   

6.
P-型半导体探测器在放射治疗中的剂量特性研究   总被引:3,自引:0,他引:3  
电子束半导体探测器的测量精度易受到射线的能量、剂量率、入射方向和环境温度等条件的影响。此外,电子束测量射野中半导体探测器的存在将干扰均匀射野剂量场的正常分布。通过对P-型电子束半导体探测器在不同的电子束照射条件下的实际剂量测量,定量地评估了不同照射条件下电子束半导体探测器的剂量特性,以及它对电子束均匀照射野扰动的影响。The measurement accuracy of electron beam by using semiconductor detector is easily affected by beam energy, dose rate, beam incidence direction, environment temperature etc. Furthermore, the presence of the detectors on the patient surface perturbs the distribution of the radiation field. In the paper, the dose characteristics of semiconductor detector are quantitatively discussed. The perturbation of the symmetrical radiation field is investigated based on the measured results of P-type electron beam detector under different clinical conditions.  相似文献   

7.
Systematic investigations including both simulation and prototype tests have been done about the interpolating resistive readout structure with GEM (Gaseous Electron Multiplier) detector. From the simulation, we have a good knowledge of the process of charge diffusion on the surface of the readout plane and develop several reconstruction methods to determine the hit position. The total signal duration time of a typical event with the readout structure was about several hundred nanoseconds, which implied an ideal count rate up to 106 Hz. A stable working prototype was designed and fabricated after the simulation. Using 55Fe 5.9 keV X-ray, the image performance of the prototype was examined with flat field image and some special geometry shapes, meanwhile, an energy resolution of about 17% was obtained.  相似文献   

8.
To reduce the discharge of the standard bulk Micromegas and GEM detectors, a GEM-Micromegas detector was developed at the Institute of High Energy Physics. Taking into account the advantages of the two detectors, one GEM foil was set as a preamplifier on the mesh of Micromegas in the structure and the CEM pream- plification decreased the working voltage of Micromegas to significantly reduce the effect of the discharge. At the same gain, the spark probability of the GEM-Micromegas detector can be reduced to a factor 0.01 compared to the standard Micromegas detector, and an even higher gain could be obtained. This paper describes the performance of the X-ray beam detector that was studied at 1W2B Laboratory of Beijing Synchrotron Radiation Facility. Finally, the result of the energy resolution under various X-ray energies was given in different working gases. This indicates that the GEM-Micromegas detector has an energy response capability in an energy range from 6 keV to 20 keV and it could work better than the standard bulk-Micromegas.  相似文献   

9.
The resistivity of conventional glass is quite high and is unacceptable in a high rate environment. Low resistive glass-electrodes could be a solution for this problem. The present study reports the e^+/e^- simulation results of an RPC detector made from low resistive phosphate glass electrodes. The detailed geometrical configuration of the content materials which are the essential components of the glass of the RPC detector have been created with the GEANT4 simulation code. Two different types of particle sources, i.e. for e^+/e^- , have been located on the detectors surface to evaluate the performance of the phosphate glass RPC. Both of the particles have been simulated as a function of their respective energies in the range of 0.1 MeV 1.0 GeV. The present simulation work has shown that the resistive electrode plays an important role for the particle production in the RPC configuration.  相似文献   

10.
中国散裂中子源( CSNS ) 的建造对中子探测器提出了非常高的要求,如更大的有效面积、二维位置灵敏、高计数率、高探测效率和低的 灵敏度等。与传统的模拟读出方法相比,数字法读出具有更高的计数率, 更小的数据传输量,更简单的电子学设计以及更高的信噪比。对数字法读出进行了理论计算,利用GEM探测器的原始数据分析了数字法读出的位置分辨率与读出条宽度的关系。结果表明,数字法读出对于位置分辨要求较低( 小于4 mm) 的大面积位置灵敏探测器是一种较好的选择,如CSNS 小角谱仪探测器。Efficient thermal neutron detectors with large area, two-dimensional position sensitive, high counting rate high detection efficiency and low gamma sensitivity are required to satisfy the demands for the China Spallation Neutron Source (CSNS). Compared with the traditional analog readout method, the digital readout method has the advantages of higher counting rate, smaller quantity of data transmission, simpler readout system and higher signal to noise ratio. The theoretical analysis of the digital readout method is reported in this paper. Used the raw data of GEM detector, the relationship between the position resolution and the width of the readout strip was studied. The results indicate that the digital readout method could be a good choice for the large area position sensitive detector where the requirement of position resolution is less than 4 mm, e.g. the detector of Small-Angle Neutron Scattering (SANS) diffractometer of CSNS.  相似文献   

11.
新型微结构气体探测器,如气体电子倍增器(gas electron multiplier,GEM)等,具有非常好的位置分辨率潜力(σ100μm),但是需要匹配大规模高密度的读出电子学,给探测器的建设、造价、功耗、空间利用等带来极大压力.阻性阳极读出方法可以在保持较高位置分辨率的前提下,大幅节省电子学.基于厚膜电阻工艺,一种新的阻性单元阵列结构被成功开发和应用于三级级联GEM探测器的读出阳极.该阻性阳极包括6×6个6 mm×6 mm的基本阻性单元,仅需匹配49路读出电子学.~(55)Fe放射源(5.9 keV)和X光机(8 keV)实验的结果显示探测器的位置分辨率(σ)可好于80μm,位置非线性好于1.5%.同时,探测器还获得了很好的实物成像效果.探测器的优良性能表明这种阻性阳极读出方法适用于大面积二维成像气体探测器的读出,并可用于其他探测器的读出.  相似文献   

12.
随着微结构气体探测器的不断发展, 不同的探测需求相继提出.为了实现气体探测器在高增益和低打火率的条件下长时间稳定工作, 结合气体电子倍增器(GEM)与微网结构气体探测器(MicroMegas)的探测优势, 成功研制出一种基于GEM作为预放大的MicroMegas探测器, 详细介绍了探测器结构和工作原理, 并利用55Fe放射源对探测器增益、打火率、能量分辨和工作稳定性等性能进行了实验测量. 分析结果显示GEM-MicroMegas探测器可以连续工作30 h 以上, 探测器增益可以超过106, 相对于无GEM膜的MicroMegas探测器, 相同增益下打火率可以降低近100倍. 关键词: 微网结构气体探测器 能量分辨率 增益 打火率  相似文献   

13.
研制了一种结构简单、拆装方便的自积分电容分压器,用于测量强流电子加速器二极管输出电压。介绍了电容分压器的结构,计算了其电容量,并通过仿真的方法分析了前端电阻及其杂散参数对测量波形的影响,结果表明:当前端电阻杂散电容较大时,测量波形出现过冲现象;而前端电阻对地电容较大时,会影响测量波形的前沿。将电容分压器用于测量强流电子加速器二极管输出电压,并运用水电阻分压器对其进行了标定,所测得波形与电阻分压器基本一致,分压比为563 007,可以用于测量半高宽为100 ns的高压脉冲。  相似文献   

14.
一种陡脉冲高电压电阻分压器的补偿方法   总被引:6,自引:1,他引:5  
在对实用分压器构型进行分析比较的基础上提出了一种补偿法。其特点是,采用高阻高压臂一级分压构型,利用低阻低压臂自身电感对分压器的对地分布电容进行抵偿。按这种方法设计的兆估级纳秒脉冲电阻分压器自身的方法响应上升时间约为1ns。  相似文献   

15.
数值研究了平衡磁场位形对电阻壁模稳定性的影响。研究发现,磁场剪切对电阻壁模有解稳作用,对于不同的剪切磁场位形,最不稳定的电阻壁模的环向模数和极向模数不同。等离子流对电阻壁模的增长有抑制作用,稳定住电阻壁模的临界流速度随着磁场剪切率的增大而增大。电阻壁模经线性增长后,进入非线性演化阶段,最后达到饱和状态,剪切磁场位形下的扰动磁能比均匀磁场位形下的扰动磁能饱和度高。  相似文献   

16.
李永亮  余健辉  张军 《应用光学》2019,40(6):1115-1119
为了实现可见光通信系统的探测器模块微小型化,设计并制作了一款50 cm3的温控APD探测器模块,并对模块的稳定性、温控效果和噪声特性进行了检测。结果表明,APD探测器模块的光电流测量平均相对偏差为0.795%;APD探测器的雪崩增益和响应度随着温度的降低而提高;APD探测器电阻的变化影响负载电阻分压,使得过剩噪声因子的测量值远大于真实值,且会随着入射光功率的增大而增大。可以得出结论:提高反向偏置电压与降低温控温度相配合,更有利于弱光信号检测;检测电路中的负载电阻影响APD探测器噪声特性。  相似文献   

17.
气体电子倍增器(GEM)因其具有较好的位置分辨以及各项同性的二维结构等优点,近年来受到了广泛的关注,在HIRFL-CSR上正在建设的低温高密核物质测量谱仪(CEE)也计划使用GEM作为TPC的读出探测器。不同电场条件下GEM探测器的传输特性对探测器的有效增益及能量分辨有较大影响。文中研究了单层GEM探测器中漂移区电场及感应区电场对探测器传输特性的影响;随后研究了双层GEM探测器的电压分配及传输区电场对探测器电荷传输性能的影响。结果表明,在单层及多层GEM探测器中,漂移区电场、传输区电场及感应区电场主要通过改变电子透过率和GEM雪崩电场强度及分布影响探测器的电荷传输性能,进而影响探测器的有效增益及能量分辨。以上实验结果表明GEM探测器是CEE-TPC读出探测器的理想选择,同时测试结果也为TPC中多层级联GEM工作点的选择提供了参考依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号