首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   2篇
  国内免费   2篇
物理学   5篇
  2014年   2篇
  2013年   1篇
  2012年   2篇
排序方式: 共有5条查询结果,搜索用时 31 毫秒
1
1.
The design and performance of a Micromegas with a resistive anode are presented in this paper. A thin resistive sheet with volume resistivity of 1012 Ω·m cm is glued onto the readout electrode surface and its performance is investigated by using a 55Fe X-ray radioactive source in the operation gas of argon and isobutene mixtures (Ar/Iso=95/5). The gas gain at different mesh high voltage, counting rate and working time are given. Energy spectra at different working voltages are measured and the results are discussed. We have oberved that a Micromegas with a resistive anode can be operated at higer gain than a standard Micromegas without sparks.  相似文献   
2.
随着微结构气体探测器的不断发展, 不同的探测需求相继提出.为了实现气体探测器在高增益和低打火率的条件下长时间稳定工作, 结合气体电子倍增器(GEM)与微网结构气体探测器(MicroMegas)的探测优势, 成功研制出一种基于GEM作为预放大的MicroMegas探测器, 详细介绍了探测器结构和工作原理, 并利用55Fe放射源对探测器增益、打火率、能量分辨和工作稳定性等性能进行了实验测量. 分析结果显示GEM-MicroMegas探测器可以连续工作30 h 以上, 探测器增益可以超过106, 相对于无GEM膜的MicroMegas探测器, 相同增益下打火率可以降低近100倍. 关键词: 微网结构气体探测器 能量分辨率 增益 打火率  相似文献   
3.
To reduce the discharge of the standard bulk Micromegas and GEM detectors, a GEM-Micromegas detector was developed at the Institute of High Energy Physics. Taking into account the advantages of the two detectors, one GEM foil was set as a preamplifier on the mesh of Micromegas in the structure and the GEM preamplification decreased the working voltage of Micromegas to significantly reduce the effect of the discharge. At the same gain, the spark probability of the GEM-Micromegas detector can be reduced to a factor 0.01 compared to the standard Micromegas detector, and an even higher gain could be obtained. This paper describes the performance of the X-ray beam detector that was studied at 1W2B Laboratory of Beijing Synchrotron Radiation Facility. Finally, the result of the energy resolution under various X-ray energies was given in different working gases. This indicates that the GEM-Micromegas detector has an energy response capability in an energy range from 6 keV to 20 keV and it could work better than the standard bulk-Micromegas.  相似文献   
4.
本文介绍了micromegas探测器的主要工艺----micro-bulk工艺.并使用55Fe放射源对制作完成的micro-bulk工艺原理探测器 进行了测试,对比了与绝缘丝工艺原理探测器能量分辨率的差别,并进一步研究了micro-bulk工艺探测器电子透过率等性能测试 的结果.  相似文献   
5.
To reduce the discharge of the standard bulk Micromegas and GEM detectors, a GEM-Micromegas detector was developed at the Institute of High Energy Physics. Taking into account the advantages of the two detectors, one GEM foil was set as a preamplifier on the mesh of Micromegas in the structure and the CEM pream- plification decreased the working voltage of Micromegas to significantly reduce the effect of the discharge. At the same gain, the spark probability of the GEM-Micromegas detector can be reduced to a factor 0.01 compared to the standard Micromegas detector, and an even higher gain could be obtained. This paper describes the performance of the X-ray beam detector that was studied at 1W2B Laboratory of Beijing Synchrotron Radiation Facility. Finally, the result of the energy resolution under various X-ray energies was given in different working gases. This indicates that the GEM-Micromegas detector has an energy response capability in an energy range from 6 keV to 20 keV and it could work better than the standard bulk-Micromegas.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号