首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Lasers from a Tm:YAG slab is end-pumped by continuous-wave output of the Tm:YAG ceramic ceramic am~e reported for the t~rst time to our best knowledge. The Tm:YAG ceramic a laser diode with central wavelength 792nm. At room temperature, the maximum power is 4.5 W, and the sloping efficiency is obtained to be 20.5%. The laser spectrum is centered at 2015nm.  相似文献   

2.
We demonstrate a 511 W laser diode pumped composite Nd:YAG ceramic laser. The optical pumping system is consisted of five laser diode stacked arrays arranged in a pentagonal shape around the ceramic rod whose size is φ6.35×144mm. When the pumping power is 1600 W, the cw laser output up to 511 W at 1064nm can be obtained with a linear piano-piano cavity, and the optical-to-optical efficiency is 31.9%. To our knowledge, this is the highest value of laser output by using a newly invented composite Nd:YAG ceramic rod as the gain medium.  相似文献   

3.
Laser performance of 1064 nm domestic Nd:YAG ceramic lasers for 885 nm direct pumping and 808 nm traditional pumping are compared. Higher slope efficiency of 34% and maximum output power of 16.5 W are obtained for the 885nm pump with a 6ram length 1 at.% Nd:YAG ceramic. The advantages for 885nm direct pumping are discussed in detail. This pumping scheme for highly doping a Nd:YAG ceramic laser is considered as an available way to generate high power and good beam quality simultaneously.  相似文献   

4.
An efficient and high-power diode-laser single-end-pumped Nd:YVO4 laser with cw emission at 1342nm is presented. With a crystal single-end-pumped by a fibre-coupled diode laser, an output power of 7.36 W is obtained from the laser cavity of concave-convex, eorresponding to an optical-to-optical conversion efficiency of 32.8%. The laser is operated in TEM00 mode with small rms noise amplitude of 0.3%. This represents, to the best of our knowledge, the highest power obtained from a diode-laser single-end-pumped Nd:YVO4 cw laser at 1342nm 80 far.  相似文献   

5.
A folded four-mirror cavity with a composite Nd:YAG rod is optimized to obtain high efficient cw 473nm blue output. The laser could operate stably in the region of the thermal-lens focal length from 20mm to 70mm. LBO is used for intracavity frequency doubling of the 946nm transition of Nd:YAG and the optimum LBO length is investigated. A maximum output power of 2.1 Win the blue spectral range at 473nm is achieved with 30-mm-long LBO, corresponding to an optical conversion efficiency of 9.1%.  相似文献   

6.
A compact low-threshold Raman laser at 1178 nm is experimentally realized by using a diode-end-pumped actively Q-switched Nd^3+ :YVO4 self-Raman laser. The threshold is 370mW at a pulse repetition frequency of S kHz. The maximum Raman laser output is 182 m W with the pulse duration smaller than 20 ns at a pulse repetition frequency of 30kHz with 1.8 W incident power. The optical efficiency from the incident power to the Raman laser is 10% and the slope efficiency is 13.5%.  相似文献   

7.
We report, for the first time to our knowledge, a diode-pumped passive Q-switched 946nm Nd:YAG laser by using a GaAs as saturable absorber. The maximum average output power is 1.24 W at an incident pump power of 15 W, corresponding to a slope efficiency of 10%. Laser pulses with pulse duration of 70ns and repetition rate of 330 kHz are generated.  相似文献   

8.
We demonstrate a high efficiency multi-kW diode-side-pumped Nd:YAG laser. High cooling efficiency of the diode-side-pumped module in the laser is achieved. The middle portion of the Nd:YAG rod in the module is cooled by a coolant jet with screwed side surface, and the end-caps of the rod without screwed side surface are cooled by Au coated on the surface. The thermal effect of the laser rod is reduced, which leads to high output power with high optical-optical conversion efficiency. By using three identical Nd:YAG laser modules, an output power of 4.2 kW and beam quality of 58 mm・mrad with an optical-optical efficiency of 35% at 1064 nm is obtained in a laser oscillator. By using four identical Nd:YAG laser modules, an output power of 3.1 kW and beam quality of 17 mm・mrad with an optical-optical efficiency of 25.8% is demonstrated in a master oscillator power-amplifier system.  相似文献   

9.
Pumped by a frequency-doubled Nd:YAG laser, 10-Hz repetition rate, 320-mJ pump energy, and 5.1-ns pulse width, a liquid Raman laser using acetone as the Raman shifting medium has been established. The residual pump laser pulse and the generated Stokes pulse are directed to a DCM dye cell for energy enhancement of the Stokes pulse. The Raman laser system is capable to produce a laser pulse at wavelength 630nm, with single pulse energy of 120md, peak power of 70MW and an average power of 1200mW. The energy conversion efficiency is 37.5%, or equivalently a quantum efficiency of 44.5%.  相似文献   

10.
We report a compact high power Tm,Ho:YAG laser nearly at room temperature. The laser-diode side-pumped Tm:YAG and Tm,Ho:YAG laser modules are operated in the same cavity. The laser yields 37.34 W of continuous wave output power under the temperature of 6℃, corresponding to a maximum slope efficiency of 16.7% when the output power lies from 5.1 W to 27.0 W. This is the first report on the combined Tm:YAG and Tm,Ho:YAG lasers for obtaining high power 2.1 μm laser.  相似文献   

11.
A high-efficiency high-power Nd:YAG laser under 885 nm laser diode (LD) pumping is demonstrated. The laser crystal is carefully designed, and the overlapping between the pump modes and the laser modes is optimized. The maximum output power at 1064 nm is 87W under the absorbed pump power 127.7 W, corresponding to a slope efficiency of 72.4% and an optical-optical efficiency of 68.1%. The optical-optical efficiency is 58.4% for the pump power emitted directly from the LD. To our best knowledge, this is the maximal optical-optical conversion efficiency obtained for the LD end-pumped Nd:YAG lasers so far.  相似文献   

12.
We report an efficient mid-infrared optical parametric oscillator (OPO) pumped by a pulsed Tm,Ho-codoped GdVO4 laser. The IO-W Tm,Ho:GdVO4 laser pumped by a 801 nm diode produces 20ns pulses with a repetition rate of lO kHz at wavelength of 2.0481μm. The ZnGeP2 (ZGP) OPO produces 15-ns pulses in the spectral regions 3.65-3.8μm and 4.45-4.65μm simultaneously. More than 3 W of mid-IR output power can be generated with a total OPO slope efficiency greater than 58% corresponding to incident 2μm pump power. The diode laser pump to mid-IR optical conversion efficiency is about 12%.  相似文献   

13.
We demonstrate the continuous wave p-polarized single longitudinal mode (SLM) operation of an Er:YAG laser at 1617.6nm pumped by a diode-laser with three inserted Fabry-Perot (FP) etalons at room temperature. The Brewster angle inserted FP is applied to obtain the p-polarized laser. For free running, the maximum output power is 570 m W with a pump power of 12.5 W. An incident pump power of 12.5 W is used to generate the maximum p-polarized single longitudinal mode output power of 78.5 m W, corresponding to a slope efficiency of 1.6% and an optical-to-optical efficiency of 0.61%. The beam quality M2 is measured to be 1.15 at the highest SLM output power. This stable polarized SLM oscillation is encouraging due to its application for an injection-locked system used as a master laser.  相似文献   

14.
An efficient high power long wave infrared laser based on ZnGeP2 optical parametric oscillator pumped by a 2.09μm Tm:YLF/Ho:YAG laser at 10KHz pulse repetition rate is reported. The pump to idler conversion efficiency is 8% at 15.6W Ho pump power level and a quantum efficiency of 31% when the 1idler wavelength is tuned at 8.08μm. The wavelength tuning range from 8-9.1μm is also achieved by rotating the ZGP crystal.  相似文献   

15.
A high efficiency, high power diode-side-pumped quasi continuous wave (QCW) Nd:YAG ceramic rod laser at 1064 nm based on the domestic transparent ceramic is reported. The average output power of 961 W is achieved with double ceramic rods by means of a symmetrical convex-convex cavity. The optical-to-optical conversion efficiency is 38.3% and the slope efficiency is 45.3%. To the best of our knowledge, this is the highest level of efficiency achieved for the domestic Nd:YAG ceramic rod laser.  相似文献   

16.
The quantum cascade laser (QCL), a potential laser source for mid-infrared applications, has all of the advantages of a semiconductor laser, such as small volume and light weight, and is driven by electric power. However, the optical power of a single QCL is limited by serious self-heating effects. Therefore, beam combination technology is essential to achieve higher laser powers. In this letter, we demonstrate a simple beam combination scheme using two QCLs to extend the output peak power of the lasers to 2.3 W. A high beam combination efficiency of 89% and beam quality factor of less than 5 are also achieved.  相似文献   

17.
We present a high power and efficient operation of the ^4F3/2 → ^4I9/2 transition in Nd:GdVO4 at 912nm. In the cw mode, the maximum output power of 8.6 W is achieved when the incident pump power is 40.3 W, leading to a slope efficiency of 33.3% and an optical-optical efficiency of 21.3%. To the best of our knowledge, this is the highest cw laser power at 912nm obtained with the conventional Nd:GdVO4 crystal. Pulsed operation of 912nm laser has also been realized by inserting a small aeousto-optie (A-O) Q-Switch inside the resonator. As a result, the minimal pulse width of 20ns and the average laser power 1.43 W at the repetition rate of lOkHz are obtained, corresponding to 7.1 kW peak power. We believe that this is the highest laser peak power at 912nm. Furthermore, duration of 65ns has also been acquired when the repetition rate is 100 kHz.  相似文献   

18.
We report a high-effciency Nd:YAG laser operating at 1064 nm and 1319nm, respectively, thermally boosted pumped by an all-solid-state Q-switched Ti:sapphire laser at 885 nm. The maximum outputs of 825.4 m W and 459.4mW, at 1064nm and 1319nm respectively, are obtained in a 8-ram-thick 1.1 at.% Nd:YAG crystal with 2.1 W of incident pump power at 885nm, leading to a high slope efficiency with respect to the absorbed pump power of 68.5% and 42.0%. Comparative results obtained by the traditional pumping at 808nm are presented, showing that the slope efficiency and the threshold with respect to the absorbed pump power at 1064nm under the 885nm pumping are 12.2% higher and 7.3% lower than those of 808rim pumping. At 1319nm, the slope efficiency and the threshold with respect to the absorbed pump power under 885nm pumping are 9.9% higher and 3.5% lower than those of 808 nm pumping. The heat generation operating at 1064 nm and 1319 nm is reduced by 19.8% and 11.1%, respectively.  相似文献   

19.
The fluorescence spectrum and thermal properties of the mixed crystal Nd:Luo.gvLa~.o1VO4 are determined. The strongest emission peak located at 1065.6 nm had a full width at half maximum (FWHM) of 2.1 nm. Continuous-wave (CW) laser performance is demonstrated by a compact planar planar cavity that is end- pumped by a diode laser. The laser output characteristics are investigated by using output couplers with different transmissions. A maximum CW output power of 8.09 W was obtained at an incident pump power of 19.4 W, which corresponds to an optical-to-optical conversion efficiency of 41.7% and a slope efficiency of 54.6%. The dependence of optimum transmission on pump power is calculated theoretically and is found to be consistent with experimental results.  相似文献   

20.
We have made a gain-switched all-solid-state quasi-continuous-wave (QCW) tunable Ti:sapphire laser system, which is pumped by a 532 nm intracavity frequency-doubled Nd:YAG laser. Based on the theory of gain-switching and the study on the influencing factors of the output pulse width, an effective method for obtaining high power and narrow pulse width output is proposed. Through deliberately designing the pump source and the resonator of the Ti:sapphire laser, when the repetition rate is 6 kHz and the length of the cavity is 220 mm, at an incident pump power of 22 W, the tunable Ti:sapphire laser from 700 to 950nm can be achieved. It has a maximum average output power of 5.6W at 800nm and the pulse width of 13.2 ns, giving an optical conversion efficiency of 25.5% from the 532 mn pump laser to the Ti:sapphire laser.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号