首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We report a high-effciency Nd:YAG laser operating at 1064 nm and 1319nm, respectively, thermally boosted pumped by an all-solid-state Q-switched Ti:sapphire laser at 885 nm. The maximum outputs of 825.4 m W and 459.4mW, at 1064nm and 1319nm respectively, are obtained in a 8-ram-thick 1.1 at.% Nd:YAG crystal with 2.1 W of incident pump power at 885nm, leading to a high slope efficiency with respect to the absorbed pump power of 68.5% and 42.0%. Comparative results obtained by the traditional pumping at 808nm are presented, showing that the slope efficiency and the threshold with respect to the absorbed pump power at 1064nm under the 885nm pumping are 12.2% higher and 7.3% lower than those of 808rim pumping. At 1319nm, the slope efficiency and the threshold with respect to the absorbed pump power under 885nm pumping are 9.9% higher and 3.5% lower than those of 808 nm pumping. The heat generation operating at 1064 nm and 1319 nm is reduced by 19.8% and 11.1%, respectively.  相似文献   

2.
Lee HC  Byeon SU  Lukashev A 《Optics letters》2012,37(7):1160-1162
We describe the output performance of the 1415 nm emission in Nd:YAG in a plane-concave cavity under traditional pumping into the 4F5/2 level (808 nm) and direct in-band pumping into the 4F3/2 level (885 nm). An end-pumped Nd:YAG laser yielded maximum cw output power of 6.3 W and 4.2 W at 885 nm and 808 nm laser diode (LD) pumping, respectively. To the best of our knowledge, this is the highest output power of a LD-pumped 1415 nm laser.  相似文献   

3.
We demonstrate a 1064nm Nd:YAG laser by directly pumping into the upper lasing level with a tunable Ti:sapphire laser. The valid wavelength is demonstrated at 868.3nm, 875.2nm, 883.8nm, and 885.5nm, respectively. To our knowledge, this is the first time that 1064nm Nd:YAG laser pumped by 875.2nm laser. In addition, laser wavelength at 946 nm is also generated by direct pumping together with traditional pumping.  相似文献   

4.
A Nd:CNGG laser operated at 935 nm and 1061 nm pumped at 885 nm and 808 nm, respectively, is demonstrated. The 885 nm direct pumping scheme shows some advantages over the 808 nm traditional pumping scheme. It includes higher slope efficiency, lower threshold, and better beam quality at high output power. With the direct pumping, the slope efficiency increases by 43% and the threshold decreases by 10% compared with traditional pumping in the Nd:CNGG laser operated at 935 nm. When the Nd:CNGG laser operates at 1061 nm, the direct pumping increases the slope efficiency by 14% with a 20% reduction in the oscillation threshold.  相似文献   

5.
We present theoretical and experimental investigations on ground-state direct pumping at 869 nm into the emitting level 4F3/2 of end-pumped quasi-three-level Nd:YAG lasers operating at 946 nm. We have demonstrated, what we believe is for the first time, a Nd:YAG laser at 946 nm directly pumped by diodes and obtained 1.6 W of output power.  相似文献   

6.
We present for the first time a Nd:YAG laser emitting at 1064 nm intracavity pumped by a 946 nm diode-pumped Nd:YAG laser. A 885 nm laser diode is used to pump the first Nd:YAG crystal emitting at 946 nm, and the second Nd:YAG laser emitting at 1064 nm intracavity pumped at 946 nm. We achieved an output power of 7.97 W at 1064 nm for an absorbed pump power at 946 nm of 9.55 W, corresponding to an optical efficiency of 83.4%. The beam quality M2 quality factor is about 1.1 at the maximum output power.  相似文献   

7.
We report an efficiency Nd:CNGG laser operating at 1061 and 1329 nm, respectively, direct pumped by a diode laser at 885 nm for the first time to our knowledge. The maximum outputs of 4.5 and 2.9 W, at 1061 and 1329 nm, respectively, are obtained in a 6-mm-thick 0.5 at % Nd:CNGG crystal with 13.5 W of absorbed pump power at 885 nm, leading to a high slope efficiency with respect to the absorbed pump power of 32.2 and 22.1%. Under traditional pumping at 808 nm, the maximum outputs of 3.9 and 2.7 W, at 1061 and 1329 nm, respectively, are obtained with 15.4 W of absorbed pump power, corresponding to the slope efficiency with respect to the absorbed pump power of 25.2 and 17.9%.  相似文献   

8.
The continuous-wave high efficiency laser emission of Nd:YAG at the fundamental wavelength of 1319 nm and its 659.5-nm second harmonic obtained by intracavity frequency doubling with an LBO nonlinear crystal is investigated under pumping by diode laser at 885 nm (on the 4 F 3/24 I 13/2 transition). An end-pumped Nd:YAG crystal yielded 9.1 W at 1319 nm of continuous-wave output power for 18.2 W of absorbed pump power. The slope efficiency with respect to the absorbed pump power is 0.55. Furthermore, 5.2 W 659.5 nm red light is acquired by frequency doubling, resulting in an optical-to-optical efficiency with respect to the absorbed pump power of 0.286. Comparative results obtained for the pump with diode laser at 808 nm (on the 4 F 5/24 I 13/2 transition) are given in order to prove the advantages of the 885 nm wavelength pumping.  相似文献   

9.
We report on a passively mode-locked TEM00 Nd:YAG oscillator with the beam quality at M 2 = 1.1 by a semiconductor saturable absorber mirror under 885 nm laser diode direct pumping for the first time. A maximum average output power of 17 W at a repetition rate of 80 MHz with 39 ps pulse width was obtained under the absorbed pump power of 38 W, corresponding to an optical-optical efficiency of 44% and the slope efficiency of 69%, respectively.  相似文献   

10.
<正>In diode pumped Nd:YAG lasers,the quantum defect is the most important parameter determining the thermal load of the laser crystal,which can be dramatically reduced by pumping directly into the upper laser level.A compact folded three-mirror cavity with a length of 105 mm is optimized to obtain a highly efficient 473-nm laser.When the absorbed pump power(with 15.8-W incident pump power) at 885 nm into Nd:YAG is 10 W,a continuous-wave 473-nm blue laser as high as 2.34 W is achieved by LBO intra-cavity frequency doubled.The optical-to-optical conversion efficiency is 14.8%.To the best of our knowledge, this is the highest efficiency at 473 nm by an intra-cavity doubled frequency Nd:YAG laser.  相似文献   

11.
Frede M  Wilhelm R  Kracht D 《Optics letters》2006,31(24):3618-3619
A high-power longitudinally pumped Nd:YAG laser using direct pumping into the upper laser level is demonstrated. With an absorbed pump power of 438 W an output power of 250 W was realized, which results in an optical-to-optical efficiency of 57%. To the best of our knowledge, this is the first demonstration of a high-output power 885 nm pumped laser design.  相似文献   

12.
谭雪春  武志超  梁柱 《光子学报》2014,39(10):1762-1765
 针对陶瓷晶体1319 nm的谱线设计了适合的谐振腔腔镜膜系参量,采用激光二极管列阵侧向抽运掺杂1.1at%、Φ3×50 mm的Nd:YAG陶瓷,利用色散棱镜及KTP晶体Ⅱ类匹配腔内倍频,研制了一台660 nm单一波长输出的高重频Nd:YAG陶瓷红光激光器.根据陶瓷晶体的热透镜焦距设计了谐振腔的各个参量,在重复频率为1000 Hz、单脉冲抽运能量约144 mJ时,获得了3.9 mJ的660 nm脉冲激光输出,总的光-光转换效率为2.71%.为进一步研究大功率、高效率的陶瓷红光激光器奠定了基础.  相似文献   

13.
Pulsed UV lasers at the wavelengths of 374 and 280 nm are realized by cascaded second harmonic generation (SHG) and sum frequency generation (SFG) processes using a Nd:YAG laser at 1123 nm. The Nd:YAG laser is longitudinally pumped and passively Q-switched, and it has a high peak power of 3.2 kW. The UV peak powers at 280 and 374 nm are 100 and 310 W, with pulse lengths of 6 and 8 ns, respectively. Spectral broadening of 374 nm laser by stimulated Raman scattering is studied in single mode pure silica core UV fiber. Realizations of UV lasers enabling compact design at 280 and 374 nm wavelengths are demonstrated.  相似文献   

14.
A cruciform cavity is presented for multi-wavelength laser generation. On the basis of considering the optimal power ratio and good spatial overlap of the two fundamental beams, the maximum output power of 589 nm laser reaches 3.5 W when the pumping power of Nd:YAG A and Nd:YAG B are 311.5 W and 261.8 W, respectively. At the same time, the other wavelength lasers are also obtained with the output power distribution of 2.5 W at 66Onto, 15 W at 532nm, lOOmW at 1319nm and 240mW at 1064nm. The corresponding beam quality factors are M^2 x = 4.93, M^2 y = 5.01 at 589nm, M^2z = 4.51, M^2 y = 4.85 at 660hm, and M^2 x = 4.12, M^2 y = 3.96 at 532nm, respectively. The instabilities of the three visible lights are measured, which are also less than 2% within three hours.  相似文献   

15.
A laser-diode end-pumped Nd:YVO4 slab laser with a fiat-concave stable cavity at 1342nm is demonstrated. Under the pumping power of 92 W, a cw laser of output 17.8 W is obtained with the slope efficiency of 25.6%.  相似文献   

16.
Lasers from a Tm:YAG slab is end-pumped by continuous-wave output of the Tm:YAG ceramic ceramic am~e reported for the t~rst time to our best knowledge. The Tm:YAG ceramic a laser diode with central wavelength 792nm. At room temperature, the maximum power is 4.5 W, and the sloping efficiency is obtained to be 20.5%. The laser spectrum is centered at 2015nm.  相似文献   

17.
We present an efficient, high-brightness laser at 1,112 nm by combining the direct pumping technique with an 885 nm laser diode and the composite crystal. Output power as high as 12.8 W at 1,112 nm is achieved under 22.2 W of absorbed pump power and it yields an optical-to-optical efficiency of 57.7 % and a slope efficiency of 64.0 % with respect to the absorbed pump power. To the best of our knowledge, both of these optical-to-optical and slope efficiencies with respect to the absorbed pump power are the highest values ever reported for 1,112 nm Nd:YAG lasers. Modeling of the temperature rise and stress induced in the laser crystals, with and without the undoped cap, and employing the pump at 808 and 885 nm are performed, respectively. Contributions of the composite crystal geometry and of the pump at 885 nm to lowering the threshold power, enhancing the optical-to-optical and the slope efficiencies with respect to the absorbed pump power are discussed, respectively.  相似文献   

18.
We report a stable high power and high beam quality diode-side-pumped cw green laser from intracavity frequency-doubled Nd: YAG laser with KTP. By using a L-shaped concave-convex resonator, designed with two Nd:YAG rods birefringence compensation, a large fundamental mode size in the laser crystal and a tight focus in the nonlinear crystal could be obtained simultaneously. The green laser delivers a maximum 532nm output power of 23.2 W. Under 532nm output power of 20.9 W, the beam quality factor is measured to be 4.1, and the fluctuation of the output power is less than 1.4% in an hour.  相似文献   

19.
Generation of 946 nm radiation from a commercially available, flashlamp-pumped Nd:YAG laser was investigated. By suppression of the high-gain 1.064 m transition and with a specially designed cooling system, a stable emission at 946 nm was achieved in the temperature range 300–240 K. At a repetition rate of 10 Hz laser output powers of 100mW and 500 mW were obtained at room temperature and 240 K respectively. The temperature dependence of unsaturated gain, slope efficiency and pumping threshold were determined.S. Dimov is supported by a fellowship from the Alexander von Humboldt Foundation  相似文献   

20.
We demonstrate a high-repetition-rate, short-pulse-width pulse burst laser from a compact 885 nm laser diode directly pumped by a passively Q-switched YAG/Nd:YAG/Cr:YAG laser. We investigate the output laser characteristics with different output transmissions and spot sizes of the pumping laser and compare these characteristics. After optimization, we achieve a shortest pulse width of 1.4 ns generated by a 1,064 nm pulse burst laser. The single-pulse energy reaches 239 μJ at 86.3 kHz, with a peak power of 117.2 kW.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号