首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
陈静  张庆红  方文浩  王野  万惠霖 《催化学报》2010,26(8):1061-1070
 研究了多种载体负载 Pd 催化剂上苯甲醇无氧脱氢反应. 结果发现, 以兼具较强酸性和碱性的水滑石 (HT) 为载体时, Pd 催化剂具有优异的苯甲醇转化活性和苯甲醛选择性, 当 Pd 含量为 0.32%~0.55% 时催化性能最佳. Pd/HT 催化剂可重复使用, 且对于含推电子取代基的芳香醇、2-噻吩甲醇、α,β-不饱和醇与环状脂肪醇等的直接脱氢反应均具有较好催化性能. HT 表面的 Pd(II) 物种反应后转变为平均粒径为 2.0~2.5 nm 的 Pd 纳米粒子或纳米簇. 具有较高分散度的 Pd(II) 物种易转变为较小的 Pd 纳米粒子, 从而具有较佳的催化性能. 本文推测, 催化剂表面的碱性位可促进苯甲醇 O–H 键的活化, 形成 Pd-苯甲氧基中间体, 该中间体进一步脱氢生成苯甲醛和 Pd-H 物种; 而催化剂表面的质子酸位可与 Pd-H 作用, 促进 H2 的脱除.  相似文献   

2.
Several supported gold metal catalysts with different Au nanoparticles sizes were prepared and evaluated for the chemoselective hydrogenation of cinnamaldehyde (CA) to cinnamyl alcohol (CAL). To investigate the structure-activity relationship, stability of catalyst, heterogeneity and recyclability, the structural characteristics of materials and Au catalysts (fresh and spent catalysts) were studied by employing variety of physico-chemical techniques. The interrelationship among Au nanoparticles size (nm) with turnover frequency (h−1) of Au catalysts has also been explored. Among the various Au catalysts tested, nitrogen-doped mesoporous carbon (NMC) supported Au catalyst having homogeneously dispersed (78.8%) Au nanoparticles (1.6 nm) synthesized by sol-immobilization method (Au-NMC-SI) demonstrated improved catalytic activity affording 78% CAL selectivity and 94.2% CA conversion without using any promoter. Moreover, Au-NMC-SI catalyst exhibited good recyclability and stability. The catalyst synthesis approach described in this investigation opens up a novel strategy for the design of highly efficient metal nano-catalysts supported on NMC materials.  相似文献   

3.
以乙二醇代替常规的异丙醇为分散溶剂, H2PtCl6为前驱体溶剂, 甲醛为还原剂, 采用改进浸渍还原法制备Pt/C催化剂, 用XRD, TEM和XPS对其进行表征. 改进浸渍还原法容易制备高分散度Pt/C催化剂, 催化剂Pt粒径大小可通过改变溶液pH值控制, pH值从1.6增加至11.3, 铂纳米粒子的平均粒径由3.3 nm减小到1.8 nm. pH值11.3时催化剂中Pt(0), Pt(II)和Pt(IV)的含量分别为43.3%, 30.8%和25.9%. 选择不同Pt粒径大小的Pt/C催化剂与聚四氟乙烯(PTFE)一起负载于泡沫镍(FN), 得到Pt/C/FN疏水催化剂, 考查其对氢水液相交换反应的催化活性, Pt粒径越小, 催化剂活性越高.  相似文献   

4.
Au/CeO(2) samples with various Au contents were prepared by the multistep (MS) photodeposition method. Their properties including Au particle size, particle dispersion, and photoabsorption were investigated and compared with properties of samples prepared by using the single-step (SS) photodeposition method. The MS- and SS-Au/CeO(2) samples were used for selective oxidation of benzyl alcohols to corresponding benzaldehydes in aqueous suspensions under irradiation by visible light from a green LED, and the correlations between reaction rates and physical properties of the MS- and SS-Au/CeO(2) samples were investigated. Difference in the two photodeposition methods was reflected in the average size and number of Au nanoparticles, for example, 92 nm and 1.3 × 10(12) (g-Au/CeO(2))(-1) for MS photodeposition and 59 nm and 4.8 × 10(12) (g-Au/CeO(2))(-1) for SS photodeposition in the case of 1.0 wt % Au samples. Fixation of larger Au particles resulted in strong photoabsorption of the MS-Au/CeO(2) samples at around 550 nm due to the surface plasmon resonance, and the Kubelka-Munk function of the photoabsorption linearly increased with increase in Au content up to 2.0 wt %, in contrast to the photoabsorption of SS-Au/CeO(2) samples, which was weak and was saturated even at around 0.5 wt %. Due to the strong photoabsorption, the MS-Au/CeO(2) samples exhibited reaction rates approximately twice larger than those of SS-Au/CeO(2) samples with the same Au contents, and apparent quantum efficiency of MS-Au/CeO(2) reached 4.9% at 0.4 mW cm(-2). Linear correlations were observed between reaction rates (r) and surface area of Au nanoparticles (S) in both MS- and SS-Au/CeO(2) samples, though the two slopes of r versus S plots were different, suggesting that oxidation of benzyl alcohol occurred on the Au surface and that S was one of the important factors controlling the reaction rate. Photocatalytic oxidation of benzyl alcohol having an amino group revealed that the Au/CeO(2) photocatalyst exhibited high chemoselectivity toward the hydroxyl group of alcohol, i.e, the Au/CeO(2) photocatalyst almost quantitatively converted aminobenzyl alcohol to aminobenzaldehyde with 99% yield.  相似文献   

5.
PVP-protected Ag(core)/Au(shell) bimetallic nanoparticles of enough small size, i.e., 1.4nm in diameter were synthesized in one-vessel using simultaneous reduction of the corresponding ions with rapid injection of NaBH(4), and characterized by HR-TEM. The Ag(core)/Au(shell) bimetallic nanoparticles show a high and durable catalytic activity for the aerobic glucose oxidation, and the catalyst can be stably kept for more than 2months under ambient conditions. The highest activity (16,890mol-glucoseh(-1)mol-metal(-1)) was observed for the bimetallic nanoparticles with Ag/Au atomic ratio of 2/8, the TOF value of which is several times higher than that of Au nanoparticles with nearly the same particle size. The higher catalytic activity of the prepared bimetallic nanoparticles than the usual Au nanoparticles can be ascribed to: (1) the small average diameter, usually less than 2.0nm, and (2) the electronic charge transfer effect from adjacent Ag atoms and protecting PVP to Au active sites. In contrast, the Ag-Au alloy nanoparticles, synthesized by dropwise addition of NaBH(4) into the starting solution and having the large mean particle size, showed a low catalytic activity.  相似文献   

6.
Remarkable nanosize effect of zirconia in Au/ZrO2 catalyst for CO oxidation   总被引:4,自引:0,他引:4  
Nanosize effect of ZrO2 in Au/ZrO2 catalyst was studied by deposition-precipitation of Au nanoparticles in similar sizes (4-5 nm) on ZrO2 nanoparticles of varying sizes. The catalysts were characterized with XRD, TEM, XPS, and nitrogen adsorption to understand the effect of ZrO2 particle size on the catalytic nanostructures. Nanocomposite Au/ZrO2 catalysts consisting of comparably sized Au-metal (4-5 nm) and ZrO2 (5-15 nm) nanoparticles are found advantageous over those containing similarly sized Au-metal but larger ZrO2 (40-200 nm) particles for CO oxidation. This finding may have important implications on the designed preparation of advanced nanostructured catalysts and other chemical materials.  相似文献   

7.
以球状聚苯并噁嗪为载体, 采用浸渍热解法合成了钯炭纳米催化剂. 通过透射电子显微镜观察发现, 钯纳米粒子几乎全部均匀分布在载体上, 且尺寸均一, 平均直径约为3.5 nm. 结果表明, 载体表面含有丰富的含氮含氧官能团, 氮和氧原子与钯之间存在相互作用, 从而使聚苯并噁嗪能够有效固载钯纳米粒子. 采用相同的方法进一步合成Pd-Au/C和Pd-Pt/C双金属催化剂, Pd-Au和Pd-Pt纳米粒子也展现出良好的分散性, 无明显团聚现象, 平均直径分别为4.3和4.2 nm, 进一步说明聚苯并噁嗪对金属活性组分的有效固载. 将催化剂应用于苯甲醇氧化反应, 其中Pd1-Au1/C在2 h的转化率为98%, 对产物苯甲醛的选择性大于99%, 该催化剂经过焙烧可恢复催化活性, 表现出良好的循环稳定性, 并能将不同取代基的芳香醇氧化为相应的醛, 是一种良好的醇氧化催化剂.  相似文献   

8.
Gold nanoparticles with different mean sizes were formed on antimony-doped tin oxide nanocrystals by the temperature-varied deposition-precipitation method (Au/ATO NCs). Au/ATO NCs possess strong absorption in the near-infrared region due to Drude excitation in addition to the localized surface plasmon resonance (LSPR) of AuNPs around 530 nm. Au/ATO NCs show thermally activated catalytic activity for the oxidation of cinnamyl alcohol to cinnamaldehyde by hydrogen peroxide. The catalytic activity increases with a decrease in the mean Au particle size (dAu) at 5.3 nm≤dAu≤8.2 nm. Light irradiation (λex >660 nm, ∼0.5 sun) of Au/ATO NCs increases the rate of reaction by more than twice with ∼95 % selectivity. Kinetic analyses indicated that the striking enhancement of the reaction stems from the rise in the temperature near the catalyst surface of ∼30 K due to the photothermal effect of the ATO NCs.  相似文献   

9.
孙璠 《分子催化》2014,(5):410-417
以共沉淀法制备的Pd2+掺杂水滑石为前驱体,通过焙烧、还原得到了镁铝复合金属氧化物负载纳米Pd催化剂.利用X射线粉末衍射(XRD),X射线光电子能谱(XPS),场发射透射电子显微镜(TEM)等手段对催化剂进行表征,发现通过Pd2+掺杂水滑石为前驱体制备的复合金属氧化物负载纳米Pd催化剂,可以实现Pd纳米颗粒(3.6 nm)在镁铝复合氧化物表面的均匀分散.该催化剂在催化苯甲醇和苯胺一步法合成N-苄叉苯胺时,在温和的反应条件下表现出良好的催化性能以及对N-苄叉苯胺较高的选择性,产物收率99%.在循环实验过程中,催化剂表现出较好的稳定性,并且催化活性未见下降.  相似文献   

10.
在不同温度(673~1073K)下,于流动N2气中焙烧ZrO(OH)2醇(乙醇)凝胶,制备了不同尺寸的ZrO2-AN纳米晶(6~30nm).采用沉积-沉淀方法制备了相应的质量分数为0.7%的Au/ZrO2-AN催化剂.用XRD,XRF,TEM/HRTEM,EDS,N2吸附和1,3-丁二烯加氢反应对ZrO2-AN和Au/ZrO2-AN催化剂进行了表征.结果表明,在所有的Au/ZrO2-AN样品中,Au粒子的平均尺寸为4~5nm,ZrO2-AN的颗粒大小没有因为负载Au粒子而发生改变.1,3-丁二烯在Au/ZrO2-AN催化剂催化下能以100%的选择性进行加氢反应生成单烯烃.随着Au/ZrO2-AN催化剂中ZrO2-AN纳米晶尺寸的增加或“载体”焙烧温度的升高,1,3-丁二烯的转化率明显降低;1-丁烯的选择性先增加后减小,2-丁烯中反/顺异构体的摩尔比在0.5~1.0的范围内逐渐增大,TEM/HRTEM表征结果清楚地表明,Au/ZrO2-AN催化剂中Au粒子与ZrO2-AN颗粒接触界面/周边随ZrO2-AN颗粒尺寸的减小而明显增加,这很可能是含有更小尺寸ZrO2-AN纳米粒子的Au/ZrO2-AN催化剂具有更高的催化活性的重要原因.  相似文献   

11.
Recently, gold nanoparticles attracted an increased attention due to unusual and somewhat unexpected catalytic properties especially pronounced in the oxidation of some organic compounds. Gold nanoparticles, which was immobilized on powder Norit® activated carbon as a support (1.0 wt % Au101/AC) exhibited high activity and selectivity for benzyl alcohol oxidation particularly with the gold catalysts subjected to a specific type of activation and temperature. The interaction between Au101 particles and its support was studied by measuring the catalytic activity and selectivity as a function of activation procedure. The first method included washing with a solvent (i.e., toluene) at elevated temperature, and/or followed by heat treatments at mild temperatures (i.e., 100 and 200°C for 3 h). The highest catalytic activity of benzyl alcohol oxidation was however obtained when gold catalysts were pre-washed with hot toluene at 100°C for 2 h followed by thermal treatment under vacuum. In these cases, the gold core diameters was ∼3.5 nm. In a number of experiments, the reaction time was 3 h, whereas in other runs it was extended to 24 h. The conversion level of benzyl alcohol oxidation was affected by the type of activation and its temperature related to the gold particles size.  相似文献   

12.
采用不同的沉积法制备了氧化铌(Nb2O5)负载的金纳米粒子催化剂,即沉积-沉淀(DP)法、尿素辅助的DP法、沉积-还原(DR)法和一步法制备了1 wt%Au/Nb2O5催化剂.在众多类型Nb2O5(包括商业Nb2O5)中,采用水热法制备的层间型Nb2O5(Nb2O5(HT))最适合用作载体.结果表明,较大比表面积的Nb2O5(HT)使得金以纳米颗粒形式分散于其上.在优化的条件下,以DP和DR法沉积于Nb2O5(HT)上的金纳米粒子平均粒径为5 nm.采用DR法制备的Au/Nb2O5(HT)催化剂上CO转化率为50%时的温度为73oC.不沉积金的条件下,即使在250oC, Nb2O5(HT)对CO氧化反应也没有催化活性.因此,金的沉积对活性的促进作用非常明显.该简易Au/Nb2O5催化剂将金催化剂的类型扩展到酸性载体,这将增加新的应用.  相似文献   

13.
Various Au/GO catalysts were prepared by depositing Au nanoparticles on thermally- and chemically-treated graphite oxide (GO) supports using a sol-immobilization method. The surface chemistry and structure of GO supports were characterized by a series of analytical techniques including X-ray photoelectron spectroscopy, temperature-programmed desorption and Raman spectroscopy. The results show that thermal and chemical treatments have large influence on the presence of surface oxygenated groups and the crystalline structure of GO supports. A strong support effect was observed on the catalytic activity of Au/GO catalysts in the liquid phase aerobic oxidation of benzyl alcohol. Compared to the amount and the type of surface oxygen functional groups, the ordered structure of GO supports may play a more important role in determining the catalytic performance of Au/GO catalysts.  相似文献   

14.
The influence of cobalt particle size in the range of 2.6-27 nm on the performance in Fischer-Tropsch synthesis has been investigated for the first time using well-defined catalysts based on an inert carbon nanofibers support material. X-ray absorption spectroscopy revealed that cobalt was metallic, even for small particle sizes, after the in situ reduction treatment, which is a prerequisite for catalytic operation and is difficult to achieve using traditional oxidic supports. The turnover frequency (TOF) for CO hydrogenation was independent of cobalt particle size for catalysts with sizes larger than 6 nm (1 bar) or 8 nm (35 bar), while both the selectivity and the activity changed for catalysts with smaller particles. At 35 bar, the TOF decreased from 23 x 10(-3) to 1.4 x 10(-3) s(-1), while the C5+ selectivity decreased from 85 to 51 wt % when the cobalt particle size was reduced from 16 to 2.6 nm. This demonstrates that the minimal required cobalt particle size for Fischer-Tropsch catalysis is larger (6-8 nm) than can be explained by classical structure sensitivity. Other explanations raised in the literature, such as formation of CoO or Co carbide species on small particles during catalytic testing, were not substantiated by experimental evidence from X-ray absorption spectroscopy. Interestingly, we found with EXAFS a decrease of the cobalt coordination number under reaction conditions, which points to reconstruction of the cobalt particles. It is argued that the cobalt particle size effects can be attributed to nonclassical structure sensitivity in combination with CO-induced surface reconstruction. The profound influences of particle size may be important for the design of new Fischer-Tropsch catalysts.  相似文献   

15.
CTAB-stabilized gold nanoparticles were synthesized by applying the seeding-growth approach in order to gain information about the size dependence of the catalytic reduction of p-nitrophenol to p-aminophenol with sodium borohydride. Five different colloidal solutions of stabilized gold nanoparticles have been characterized by TEM, AFM, UV-Vis, SAXS, and DLS for their particle size distributions. Gold nanoparticles (mean sizes: 3.5, 10, 13, 28, 56 nm diameter) were tested for their catalytic efficiency. Kinetic data were acquired by UV-Vis spectroscopy at different temperatures between 25 and 45 °C. By studying the p-nitrophenol to p-aminophenol reaction kinetics we determined the nanoparticle size which is needed to gain the fastest conversion under ambient conditions in the liquid phase. Unexpectedly, CTAB-stabilized gold nanoparticles with a diameter of 13 nm are most efficient.  相似文献   

16.
采用两相法合成出含活性组分Au的辛烷基硫醇单层保护Au纳米粒子(C8AuNPs)的正己烷溶胶, 用“逐次浸润”法将C8AuNPs负载在γ-Al2O3上, 经真空干燥及活化处理制得Au/γ-Al2O3催化剂. 所制得的Au催化剂前体C8AuNPs/γ-Al2O3表面Au粒子平均粒径可控制在2-3 nm范围内, 且分布比较单一; 催化剂活性评价600 h后, 其表面Au的粒径仍主要分布在2-4 nm范围内; 真空干燥温度影响Au催化剂的粒子尺寸和催化活性, 随着真空干燥温度的提高, Au纳米粒子的粒径增大. 将所制备的催化剂用于低温CO氧化反应, 催化活性评价结果表明, 经25 ℃真空干燥制得的2.5%(质量分数, w)Au/γ-Al2O3具有较高的活性和长期稳定性, 其催化CO完全转化的最低温度为-19 ℃, 在15 ℃下CO完全转化时Au/γ-Al2O3的单程寿命至少900 h; 4.0%(w) Au/γ-Al2O3在15 ℃和进料中含水条件下对CO完全氧化的单程寿命不低于2000 h, 可见催化剂具有强的抗潮湿中毒特性. 综合上述实验结果, 讨论了影响Au/γ-Al2O3催化剂活性的可能因素.  相似文献   

17.
18.
In this work, an active nano-catalyst with gold nanoparticles loaded in hollow mesoporous silica nanospheres (HMSNs/Au) was prepared by a one-pot sol-gel method, in which gold ions were loaded in hollow mesoporous silica spheres followed by sodium alginate reduction. The characterization of the HMSNs/Au were determined by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), N2 adsorption–desorption isotherms (BET). The high catalytic activity of HMSNs/Au, denoted as apparent turn-over frequency (TOF), was detected by UV-Vis spectrophotometer for the catalytic reduction of 4-nitrophenol (74.5 h?1) and 2-nitrophenol (108.7 h?1) in the presence of sodium borohydride solution due to the small gold nanoparticles size and overall exposure of active sites. It is expected that this ecofriendly approach to prepare inorganic composited nanoparticles as high active catalysts based on hollow mesoporous materials was a promising platform for loading noble metal nanoparticles.  相似文献   

19.
Metal–support interactions (MSIs) and particle size play important roles in catalytic reactions. For the first time, silver nanoparticles supported on CeO2‐SBA‐15 supports are reported that possess tunable particle size and MSIs, as prepared by microwave (MW) irradiation, owing to strong charge polarization of CeO2 clusters (i.e., MW absorption). Characterizations, including TEM, X‐ray photoelectron spectroscopy, and extended X‐ray absorption fine structure, were carried out to disclose the influence of CeO2 contents on the Ag particle size, MSI effect between Ag nanoparticles and CeO2‐SBA‐15 supports, and the strong MW absorption of CeO2 clusters that contribute to the MSIs during Ag deposition. The Ag particle sizes were controllably tuned from 1.9 to 3.9 nm by changing the loading amounts of CeO2 from 0.5 to 2.0 wt %. The Ag nanoparticle size was predominantly responsible for the high turnover frequency (TOF) of 0.41 min?1 in ammonia borane dehydrogenation, whereas both particle size and MSIs contributed to the high TOF of 555 min?1 in 4‐nitrophenol reduction for Ag/0.5CeO2‐SBA‐15, which were twice as large as those of Ag/SBA‐15 without CeO2 and Ag/CeO2‐SBA‐15 prepared by conventional oil‐bath heating.  相似文献   

20.
Synthesis of glyoxalic acid by selective oxidation of glyoxal at ambient temperatures with O2 as an oxidant is an important problem. We found that gold nanoparticles supported on hydrotalcite (Au/HT) exhibit an appreciable catalytic activity for this reaction in the liquid phase. Moreover, Au-Pd/HT, prepared by the deposition-precipitation method is superior in the catalytic behavior to monometallic Au/HT and Pd/HT catalysts. Introduction of palladium enhances ability of the catalysts to oxidize carbonyl to carboxyl, weakens the power to rupture C-C bond and in this way improves the catalytic performance. Furthermore, the Au: Pd ratio also influences the properties of the alloy catalysts. The 1.5Au-1.5Pd/HT catalysts show the highest activity for the selective oxidation at ambient temperature producing glyoxalic acid in 13.4% yield at pH 7.7. Moreover, due to basic properties of hydrotalcite, glyoxalic acid could be synthesized over 1.5Au-1.5Pd/HT in 8.0% yield without adding a base. It is hoped that results of this study can fuel further research in designing new catalysts with alloy nanoparticles supported by hydrotalcite that can be used for the selective oxidation of other useful compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号