首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study, hollow mesoporous silica nanoparticles (HMSNs) were synthesized using the sol-gel/emulsion approach and its potential application in drug delivery was assessed. The HMSNs were characterized, by transmission electron microscopy (TEM), Scanning Electron Microscopy (SEM), nitrogen adsorption/desorption and Brunauer-Emmett-Teller (BET), to have a mesoporous layer on its surface, with an average pore diameter of about 2 nm and a surface area of 880 m2/g. Fluorescein isothiocyanate (FITC) loaded into these HMSNs was used as a model platform to assess its efficacy as a drug delivery tool. Its release kinetic study revealed a sequential release of FITC from the HMSNs for over a period of one week when soaked in inorganic solution, while a burst release kinetic of the dye was observed just within a few hours of soaking in organic solution. These FITC-loaded HMSNs was also found capable to be internalized by live human cervical cancer cells (HeLa), wherein it was quickly released into the cytoplasm within a short period of time after intracellular uptake. We envision that these HMSNs, with large pores and high efficacy to adsorb chemicals such as the fluorescent dye FITC, could serve as a delivery vehicle for controlled release of chemicals administered into live cells, opening potential to a diverse range of applications including drug storage and release as well as metabolic manipulation of cells.  相似文献   

2.
中空介孔结构因具有丰富的内部空间以及多孔渗透性外壳等优势,在催化、能源储存与转化及生物医药等领域得到了广泛应用.然而,目前仍然缺少高效、简便且绿色的合成中空介孔结构的方法.本文以柠檬酸钠胶体颗粒作为模板,通过十六烷基三甲基溴化氨(Cetyltrimethylammonium bromide, CTAB)胶束与正硅酸四乙酯(Tetraethyl orthosilicate, TEOS)的水解低聚物在胶体颗粒表面进行界面共组装,直接生长介孔二氧化硅壳层;然后通过简便的醇洗和水洗分别除去CTAB胶束和柠檬酸钠胶体颗粒后,得到中空介孔结构.进一步研究表明,负电荷的柠檬酸钠胶体颗粒与CTAB胶束之间的静电相互作用是诱导氧化硅低聚物在颗粒表面进行交联组装的关键.基于此,通过控制生长时间实现了对中空介孔结构形貌和壳层厚度的精确调控.所得中空介孔二氧化硅纳米球可以显著增强物质的扩散传输,是理想的催化剂载体,负载金纳米颗粒后可以高效催化4-硝基苯酚的还原反应.研究结果为中空介孔材料的绿色简便合成提供了思路.  相似文献   

3.
Core-shell nanoparticles of Au@silica with a diameter of approximate 45–60 nm and wall thickness in range of 3–10 nm were synthesized by using 40 and 50 nm gold nanoparticles as the templates. The mesoporous particles are regulated by 3-aminopropyltrimethoxysilane addition. Hollow mesoporous silica nanocapsules (HMSNs) were prepared by using sodium cyanide to dissolve the gold cores. The characterization of Au@silica and HMSNs by transmission electronic microscope indicated that the silica shells were uniform and smooth, and also the porosity was proved by fluorescein isothiocyanate (FITC) release experiments. The ratio of hollow core to HMSNs is more than 70%. HMSNs were subsequently used as drug carrier to investigate FITC (as a model drug) release behaviors in vitro. Fluorescent spectrometry was performed to determine the release kinetics from the HMSNs. The release profiles are significantly different as compared with the control (free FITC), which show that HMSNs are good drug carriers to control drug release, and have high potential in therapeutic drugs delivery in future applications.  相似文献   

4.
Hollow mesoporous silica nanoparticles (HMSNs) grafted with a photo‐responsive copolymer containing coumarin groups were successfully prepared. With uniform polystyrene nanoparticles and cetyltrimethylammonium bromide correspondingly as the template of core and channel, HMSNs were made from tetraethyloxysilane in alkalic condition. Epoxy groups were introduced onto the outer surface of HMSNs with γ‐(2,3‐epoxypropoxy)propyltrimethoxysilane and converted into azido groups with sodium azide, resulting in azido‐functionalized HMSNs (azido‐HMSNs). Meanwhile, single‐electron transfer‐living radical copolymerization of methyl methacrylate (MMA) and 7‐(2‐methacryloyloxy)‐4‐methylcoumarin (CMA) with propargyl 2‐bromoisobutyrate as the initiator produced alkynyl‐capped P(MMA‐co‐CMA) [alkynyl‐P(MMA‐co‐CMA)]. Finally, photo‐responsive HMSNs grafted with P(MMA‐co‐CMA) [HMSN‐g‐P(MMA‐co‐CMA)] was achieved through the click reaction between azido‐HMSNs and alkynyl‐P(MMA‐co‐CMA). Different techniques such as transmission electron microscopy, Fourier transform infrared spectroscopy, and thermal gravimetric analysis confirmed the successful preparation of the resultant hybrid nanoparticles and their intermediates. Because of its hollow core, mesoporous shell channels and light responsiveness, the coumarin‐modified HMSNs would be an interesting nano‐vehicle for guest molecules. Thus, the loading and release of pyrene with HMSN‐g‐P(MMA‐co‐CMA) was studied. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 3791–3799  相似文献   

5.
Micro/nanoscale robotics has received great attention in many important fields. However, it is still a great challenge to construct nanorobots simultaneously possessing multifunctionality, well-controlled directionality, and fast and durable motion as well as fully compatible and biodegradable components. Here, a hierarchical, asymmetric, hollow, catalytic, magnetic, and mesoporous nanorobot has been fabricated through a multistep interfacial superassembly strategy. The multilayer composites consist of hollow silica nanoflasks sequentially coated with a highly magnetic responsive Fe3O4 layer, a mesoporous silica layer with homogeneous vertical channels, and a layer of catalytic gold nanoparticles on both the inner and outer surfaces. Furthermore, para-nitrophenol was used as a model pollutant to trigger self-motility of the nanoflasks by confined catalytic degradation (CCD). We found that the bottleneck morphology and mesoporous surface both improved the catalytic nanoparticle loading capability and CCD effect, thus enabling efficient self-motility and a durable movement capacity of ∼100 h. In addition, the catalytic performance was improved by 180 % compared with that of solid spherical nanoparticles.  相似文献   

6.
Abstract

Development of novel supported catalysts with high activity and stability is still a challenge. In this study, the Au-polydopamine (Au-PDA) hollow microcapsules with Au nanoparticles embedded into the PDA microcapsule shell have been synthesized through a simple template-induced covalent assembly method, where polystyrene (PS) nanospheres were used as templates to form core/shell structured PS/Au-PDA composites, followed by core removal through tetrahydrofuran etching. Their morphology and composition were characterized by scanning electron microscope (SEM), transmission electron microscope (TEM), Fourier transform infrared spectra (FT-IR), UV-Vis spectrophotometer and X-ray diffraction (XRD), respectively. Results showed that the Au-PDA microcapsules possessed well-fined hollow structure and uniform sizes with inner diameter of about 385?nm, shell thickness of about 30?nm, and Au nanoparticles with diameter of about 17?nm incorporated. The catalytic performance of Au-PDA hollow microcapsules was evaluated through the reduction of methylene blue (MB) dye with NaBH4 as a reducing agent. Compared to PDA/Au composites with Au nanoparticles loaded on the surface of PDA microspheres, as-prepared Au-PDA hollow microcapsules show good stability and recyclability in the catalytic experiments as the Au nanoparticles were firmly wrapped in PDA matrix, which makes the Au-PDA hollow microcapsules a practicable catalyst candidate for advanced catalytic systems.  相似文献   

7.
A facile method was used to prepare hollow mesoporous TiO2 and Au@TiO2 spheres using polystyrene (PS) templates. Au nanoparticles (NPs) were simultaneously synthesized and attached on the surface of PS spheres by reducing AuCl4? ions using sodium citrate which resulted in the uniform deposition of Au NPs. The outer coating of titania via sol‐gel produced PS@Au@TiO2 core–shell spheres. Removing the templates from these core–shell spheres through calcination produced hollow mesoporous and crystalline Au@TiO2 spheres with Au NPs inside the TiO2 shell in a single step. Anatase spheres with double Au NPs layers, one inside and another outside of TiO2 shell, were also prepared. Different characterization techniques indicated the hollow mesoporous and crystalline morphology of the prepared spheres with Au NPs. Hollow anatase spheres with Au NPs indicated enhanced harvesting of visible light and therefore demonstrated efficient catalytic activity toward the degradation of organic dyes under the irradiation of visible light as compared to bare TiO2 spheres.  相似文献   

8.
A highly sustainable prototype of a flow system based on gold nanoparticles (4.2 nm) supported on thiol‐functionalized halloysite nanotubes (HNTs) was developed for catalytic applications. The catalytic performances were evaluated using the reduction of 4‐nitrophenol to 4‐aminophenol as a model system. Under the best experimental conditions (0.0001 mol%, 1.97 × 10?8 mg of Au nanoparticles), an impressive apparent turnover frequency value up to 2 204 530 h?1 was achieved and the halloysite‐based catalyst showed full recyclability even after ten cycles. The high catalytic activity confirms the importance of the use of HNTs as support for Au nanoparticles that can exert a synergistic effect both as medium for transfer of electrons from borohydride ions to 4‐nitrophenol and by modulating interfacial electron transfer dynamics. With the application of flow technology, the obtained heterogeneous HNT@Au catalyst was fully recovered and reused for at least one month.  相似文献   

9.
刘杰  蓝国钧  邱一洋  王小龙  李瑛 《催化学报》2018,39(10):1664-1671
聚氯乙烯是五大工程塑料之一,在国民经济中占有重要的地位.基于中国富煤少油缺气的能源格局,我国主要采用基于煤化工的电石法氯乙烯生产工艺,但该工艺必须采用氯化汞催化剂,受到国际限汞公约的影响,无汞催化剂的开发迫在眉睫.其中炭负载金催化剂在该反应中活性最高,近几年来取得了较大进展,有望实现产业化.氮掺杂的炭材料在诸多反应中展现了较好的性能,其负载金属催化剂可以有效提高金属的分散度及稳定性,成为近几年多相催化领域的一个研究热点.最近我们课题组报道了一种氮掺杂中孔成型的制备方法:以小麦粉为原料,通过直接炭化法制备了氮掺杂中孔成型炭,这种氮掺杂中孔成型炭作为无汞催化剂在乙炔氢氯化反应中显示出了优异的催化性能.小麦粉衍生的氮掺杂中孔成型炭具有成型容易.原料价廉易得、易于放大生产等优点,是优选的工业化催化剂的载体.本文以这种氮掺杂的成型炭为载体制备了负载型金催化剂,研究其催化乙炔氢氯化性能.结果表明,氮的掺杂使得中孔炭负载金(Au/N-MC)催化剂上乙炔氢氯化活性明显提高.在氯化氢/乙炔比例1.1、反应温度180℃、乙炔空速600 h~(-1)的条件下,Au/N-MC上的乙炔转化率为50%,是Au/MC催化剂活性的2倍.通过对催化剂的表征发现,氮的掺杂能有效地锚定Au/N-MC催化剂中活性组分Au~(3+),抑制催化剂制备过程中Au~(3+)还原为Au~0,从而提高催化剂活性和稳定性.小麦粉衍生的氮掺杂中孔炭的原料廉价易得,生产工艺简单,易成型,也容易实现工业化生产,是负载型金属催化剂的优良载体,其负载的无汞催化剂性能优越,有望取代电石法氯乙烯产业的汞催化剂,成为新一代无汞催化剂.  相似文献   

10.
Mesoporous silica with gold nanoparticles inside its pores was prepared by the soaking and ultrasound-induced reduction method. This new composite was characterized by X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET), and high-resolution transmission electron microscopy (HRTEM) techniques. The results showed that nearly spherical-shaped gold nanoparticles, with mean size in diameter of 5.2 nm, are located in the pores, most of which are less than 6 nm in diameter. The ultrasonic irradiation time dependence of optical absorption for the soaked porous solid sample, as suggested by the variation in absorbance at 310 and 544 nm, indicated the reduction of Au (III) ions, and the nucleation and aggregation of gold nanoparticles within pores of mesoporous silica. Additionally, the reaction rates estimated phenomenologically by the absorbance decay at 310 nm for both the porous sample and the corresponding soaking solution presented the enhancement of the sonochemical reduction rate of Au (III) ions within pores of mesoporous silica. It is assumed that the extensive liquid-solid interfacial zones in the pores, due to the high specific surface areas and great porosity of the mesoporous solid, are the major regions where the efficient sonochemical reduction induced by the cavitation takes place. Copyright 2001 Academic Press.  相似文献   

11.
以天然高分子阿拉伯树胶(AG)为还原剂和稳定剂制备了金纳米粒子;将含有金纳米粒子(Au NPs)、阿拉伯树胶和氨水的溶液滴加到乙醇中形成AG-Au NPs复合胶团;利用正硅酸乙酯水解,在AG-Au NPs表面包覆二氧化硅壳层;通过简单水洗的方法得到了金纳米粒子@二氧化硅(Au@SiO_2)中空微球.采用透射电子显微镜(TEM)、X射线衍射仪(XRD)和氮气吸附实验等对Au@SiO_2中空微球进行表征.通过设计对比实验,证实阿拉伯树胶在中空结构形成过程中起到模板剂的作用.催化性能测试结果表明,所制备的Au@SiO_2中空微球在硼氢化钠还原亚甲基蓝的反应中表现出良好的催化活性和重复使用性.  相似文献   

12.
Rod-shaped mesoporous silica nanoparticles (RMSN) with built-in gold nanoparticles or thin gold nanowires in the pore channels were in situ synthesized via a one-step procedure. The insertion of a hydrophobic gold precursor into the mesopores of RMSN was reached through a micellar solubilization mechanism and gold nanoparticles were achieved through a thermal reduction. The resulting RMSN and Au-RMSN samples were characterized by using X-ray diffraction, transmission and scanning microscopies (TEM and SEM), X-ray photoelectron spectroscopy (XPS), nitrogen physisorption and solid-state Nuclear Magnetic Resonance (NMR). The interaction of Au precursor (a carbene complex) with the thiol group at the silica surface was identified and found to play a crucial role in the dispersion of the uniform metal nanoparticles at the internal surface of RMSN. Moreover, TEM micrographs revealed the absence of large gold particles outside the mesopore network. The shape of Au nanoparticles and their loading amount in the mesoporous silica could be easily tuned by altering the concentration of gold precursor.  相似文献   

13.
Poly(divinylbenzene-co-acrylic acid) (poly(DVB-co-AA)) hollow microspheres with gold nanoparticles on the interior surfaces were prepared from the gold nanoparticles-coated poly(methacrylic acid) (PMAA@Au@poly(DVB-co-AA)) core-shell microspheres by removal of the PMAA core in water.Au nanoparticles-coated PMAA microspheres were afforded by the in-situ reduction of gold trichloride with PMAA microsphere as stabilizer via the interaction between carboxylic acid groups and Au nanoparticles.Gold nanoparticle...  相似文献   

14.
Gold nanoparticles (Au‐NPs) were reproducibly obtained by thermal, photolytic, or microwave‐assisted decomposition/reduction under argon from Au(CO)Cl or KAuCl4 in the presence of n‐butylimidazol dispersed in the ionic liquids (ILs) BMIm+BF4?, BMIm+OTf?, or BtMA+NTf2? (BMIm+=n‐butylmethylimidazolium, BtMA+=n‐butyltrimethylammonium, OTf?=?O3SCF3, NTf2?=?N(O2SCF3)2). The ultra small and uniform nanoparticles of about 1–2 nm diameter were produced in BMIm+BF4? and increased in size with the molecular volume of the ionic liquid anion used in BMIm+OTf? and BtMA+NTf2?. Under argon the Au‐NP/IL dispersion is stable without any additional stabilizers or capping molecules. From the ionic liquids, the gold nanoparticles can be functionalized with organic thiol ligands, transferred, and stabilized in different polar and nonpolar organic solvents. Au‐NPs can also be brought onto and stabilized by interaction with a polytetrafluoroethylene (PTFE, Teflon) surface. Density functional theory (DFT) calculations favor interactions between IL anions instead of IL cations. This suggests a Au???F interaction and anionic Aun stabilization in fluorine‐containing ILs. The 19F NMR signal in BMIm+BF4? shows a small Au‐NP concentration‐dependent shift. Characterization of the dispersed and deposited gold nanoparticles was done by transmission electron microscopy (TEM/HRTEM), transmission electron diffraction (TED), dynamic light scattering (DLS), UV/Vis absorbance spectroscopy, scanning electron microscopy (SEM), electron spin resonance (ESR), and electron probe micro analyses (EPM, SEM/EDX).  相似文献   

15.

The present work presented a synthesis of silver nanoparticles (AgNPs) and gold nanoparticles (AuNPs) using the aqueous extract of waste banana stem (WBS), Musa paradisiaca Linn. The reduction and formation of MNPs have been characterized by several analysis techniques such as X-ray diffraction (XRD), Fourier transmission infrared spectroscopy (FTIR), scanning electron microscopy (SEM), transmission electron microscopy (TEM). The techniques showed that average particle size of WBS-AgNPs and WBS-AuNPs in crystalline nature was in ranges of 7–13 nm and 11–14 nm, respectively. The synthesized nanoparticles were used to evaluate antibacterial activity and catalysis. The WBS-AgNPs showed strong antibacterial activity against B. subtilis and E. coli. The largest zone of inhibition against B. subtilis (14.2 mm) and E. coli (9.3 mm) was found at concentrations of 4.0 ppm and 2.0 ppm, respectively. The excellent catalytic application of both the nanoparticles for the reduction of 4-nitrophenol was confirmed via study on their kinetics. The normalized kinetic constants (knor) of WBS-AgNPs and WBS-AuNPs were found to be 1.72?×?10–3 s?1 mg?1 and 2.45?×?10–3 s?1 mg?1, respectively.

  相似文献   

16.
使用L-半胱氨酸作为连接剂, 利用硼氢化钠原位还原预先吸附在介孔氧化亚铜表面的氯金酸根离子,得到了Au/Cu2O异质结构. 应用X射线粉末衍射(XRD)、扫描电镜(SEM)、透射电镜(TEM)、X射线光电子能谱(XPS)、紫外-可见(UV-Vis)光谱和N2物理吸附等手段对催化剂进行表征, 并以λ>400 nm的可见光作为光源, 评价了该催化剂光催化降解亚甲基蓝(MB)的活性. 实验结果表明, 直径为4 nm的金颗粒完好地负载在介孔氧化亚铜的表面, 并且介孔氧化亚铜的细微结构与孔径均未发生变化. 研究表明, 以乙醇作为反应溶剂有效抑制了AuCl4-与Cu2O之间的氧化还原反应, 从而有利于氧化亚铜介孔结构的保持及金颗粒的原位还原. 光催化降解亚甲基蓝的结果表明, Au/Cu2O异质结构的光催化活性比纯氧化亚铜光催化活性有明显提高. 推测其光催化性能提高的主要原因如下: 一方面, 金颗粒良好的导电性有利于氧化亚铜表面电子的快速转移, 实现电子-空穴分离; 另一方面, 金颗粒可能存在的表面等离子共振现象加速了光生电子的产生.  相似文献   

17.
Gold/silica/poly(N,N'-methylenebisacrylamide) (Au/SiO2/polyMBAAm) trilayer composite materials were prepared by distillation precipitation polymerization of N,N'-methylenebisacrylamide (MBAAm) in the presence of Au/SiO2 particles as seeds, in which the seeds were prepared by a combination of gold-complexing and silane coupling agent with a further modified St?ber method. The polymerization of MBAAm was performed in neat acetonitrile with 2,2'-azobisisobutyronitrile as an initiator to encapsulate the Au/SiO2 seeds driven by the hydrogen-bonding interaction between the hydroxyl group on the surface of the seeds and the amide unit of polyMBAAm without modification of the Au/SiO2 surface in the absence of any stabilizer or surfactant. Hollow polyMBAAm microspheres with movable Au cores were further developed by the selective removal of the middle silica layer with hydrofluoric acid. The resultant trilayer Au/SiO2/polyMBAAm composite and hollow polyMBAAm microspheres with movable Au cores were characterized by transmission electron microscopy. The diffusion of chemicals across the polyMBAAm shell was investigated by a catalytic reduction of 4-nitrophenol to 4-aminophenol in the presence of sodium borohydride as a reductant.  相似文献   

18.
Composite materials of polydopamine (PDA) and gold nanoparticles on glass substrates (Au/PDA@slide) were obtained via a simple chemical process. First, PDA films (PDA@slide) were formed by immersing slides in 20 mg ml−1 dopamine aqueous solution at pH = 8.5 for 1 h. Then, PDA@slide was dipped in 0.02 M chloroauric acid (HAuCl4) aqueous solution for a certain time, Au/PDA@slide being formed. Gold nanoparticles were obtained by the reductive properties of PDA. The morphology and chemical composition of the composite material were characterized using scanning electron microscopy, X‐ray diffraction and X‐ray photoelectron spectroscopy. The catalytic properties of Au/PDA@slide were evaluated using the reduction of 4‐nitrophenol (4‐NP) in the presence of sodium borohydride (NaBH4) aqueous solution at room temperature. The catalytic activity of the optimal Au/PDA@slide was so satisfactory that the reduction of 4‐NP was completed within 10 min. Moreover, the Au/PDA@slide composite material was stable up to five cycles without significant loss of its catalytic activity. In addition, Au/PDA@slide also exhibited photocatalytic ability, photodegrading 2.5 ml of 17.5 mg l−1 methyl orange in 100 min. By measuring the UV–visible absorption bands of Au/PDA@slide, it was proved that the condition of the strongest surface plasmon resonance of Au/PDA@slide was the optimal condition for catalytic reduction of 4‐NP.  相似文献   

19.
We synthesized hierarchical Polystyrene/Polyaniline@Au(PS/PANI@Au) catalysts through a seeded swelling polymerization and in-situ reduction procedure. PS/PANI@Au catalysts possess a core of PS as seed and template, a PANI shell with fibers and uniform gold nanoparticles on the surface. The configuration changes of the PANI chains resulting from the doping/ dedoping procedure led to various loading amounts of Au nanoparticles. Reduction of 4-nitrophenol was chosen as the probe reaction to evaluate the catalytic activity of supported Au nanocatalysts. The catalytic results indicated that dedoping treatment of the PS/PANI supports provides stronger coordinative ability to metal nanoparticles as well as more –N= groups, which results in a better catalytic performance towards the reduction of 4-nitrophenol.  相似文献   

20.
A controlled drug‐delivery system has been developed based on mesoporous silica nanoparticles that deliver anticancer drugs into cancer cells with minimized side effects. The copolymer of two oligo(ethylene glycol) macromonomers cross‐linked by the disulfide linker N,N′‐bis(acryloyl)cystamine is used to cap hollow mesoporous silica nanoparticles (HMSNs) to form a core/shell structure. The HMSN core is applied as a drug storage unit for its high drug loading capability, whereas the polymer shell is employed as a switch owing to its redox/temperature dual responses. The release behavior in vitro of doxorubicin demonstrated that the loaded drugs could be released rapidly at higher temperature or in the presence of glutathione (GSH). Thus, the dual‐stimulus polymer shell exhibiting a volume phase transition temperature higher than 37 °C can effectively avoid drug leakage in the bloodstream owing to the swollen state of the shell. Once internalized into cells, the carriers shed the polymer shell because of cleavage of the disulfide bonds by GSH, which results in the release of the loaded drugs in cytosol. This work may prove to be a significant development in on‐demand drug release systems for cancer therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号