首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
刘成  谭蓉  银董红  喻宁亚  周裕旭 《催化学报》2010,31(11):1369-1373
 研究了 PMO-SBA-15 材料负载的金属钯纳米粒子 (Pd/PMO-SBA-15) 在水相中催化苯甲醇选择氧化制苯甲醛的反应. 考察了纳米粒子种类、氧化剂用量、反应时间和反应温度等对苯甲醇转化率及苯甲醛选择性的影响. 结果表明, 以水为溶剂, 以 H2O2 (30%) 为氧化剂时, 可得到较高的苯甲醇转化率和苯甲醛选择性. 当以 0.05 g 的 2%Pd/PMO-SBA-15 为催化剂, H2O2 用量为 1.5 ml, 反应温度为 80 oC, 反应 4 h 时, 苯甲醇转化率和苯甲醛选择性分别达到 97.1% 和 100.0%. 对该催化体系的重复使用性能进行了考察. 结果发现, 随着使用次数的增加, 苯甲醇转化率有所下降, 但苯甲醛选择性保持不变.  相似文献   

2.
唐紫蓉  尹霞  张燕辉  张楠  徐艺军 《催化学报》2013,34(6):1123-1127
用一维CeO2纳米管替代非一维结构的商用CeO2, 用于负载Pd而制得的催化剂在空气气氛下高温煅烧过程中Pd纳米粒子的团聚受到明显抑制, 在选择性有氧氧化苯甲醇生成苯甲醛反应中, 所制CeO2纳米管负载的Pd催化剂表现出更高的催化活性. 可见, 一维金属氧化物材料有望用作载体以抑制贵金属纳米粒子的团聚, 从而提高其催化性能.  相似文献   

3.
光催化苯甲醇直接脱氢制苯甲醛是一种利用太阳能合成精细化学品的同时生成氢气的节能途径。负载型半导体CdS基催化剂是该反应的一类典型的光催化剂。文献报道CdS的形貌对光催化水分解的性能有明显的影响,但其在光催化苯甲醇无氧脱氢制苯甲醛反应中的形貌效应研究报道极少。本工作合成了纳米片状(NS)和纳米线状(NW)两种不同形貌的CdS,发现CdS-NS表现出比CdS-NW更高的转化苯甲醇的光催化活性,但这两种催化剂对苯甲醛的选择性非常低。通过在CdS-NS和CdS-NW上负载Au25纳米团簇,光催化苯甲醇无氧脱氢制苯甲醛反应的活性和选择性明显提高,并显著减弱了CdS载体的形貌对催化反应性能的影响。以上结果为设计合成精细化学品的高效光催化剂提供了参考。  相似文献   

4.
张明明  江曼曼  梁长海 《催化学报》2013,34(12):2161-2166
以碱性阴离子交换树脂Amberlite IRA-900为载体,Pd(C3H5)(C5H5)为金属有机前体,采用金属有机气相沉积法在室温下制备了Pd@IRA-900多相催化材料.紫外-可见光谱分析证明前体和树脂骨架之间的化学作用以及树脂本身的孔道结构使得Pd纳米粒子均匀分散在载体上.透射电镜结果显示钯纳米粒子的平均尺寸为2.6 nm.在较温和的条件下Pd@IRA-900对多种卤代芳烃和苯硼酸的Suzuki偶联都具有良好的催化活性,并且催化剂重复使用5次之后依然具有很好的活性.此外,对树脂载体进行碱性交换处理后可得到一种双功能催化材料Pd@IRA-900(OH),该催化剂在不加入碱的条件下也可以催化碘苯和苯硼酸的Suzuki偶联反应.  相似文献   

5.
亚胺是一类重要的含氮有机化合物,广泛应用于生物医药、精细化工和农业生产中.由于其分子中具有不饱和C=N双键,亚胺化合物可以通过不同化学过程(如氧化还原、加成、偶合等)合成多种衍生物.工业上合成亚胺普遍采用羰基化合物与胺偶合反应获得,由于该反应需要强酸作为催化剂和脱水剂,在应用中往往对设备造成不同程度的破坏.选择氧气或空气为氧化剂,通过醇与胺氧化偶合反应合成亚胺,其副产物只有水,是一条较为绿色的合成路线.近期研究表明,均相和负载型贵金属催化剂(如Pd,Pt和Au等)在该反应中表现出较好的低温催化性能,但需要在反应过程中添加大量碱性助剂.一些非贵金属氧化物催化剂如CeO2和MnOx/HAP等在该过程中表现出一定的催化活性,但其催化效率普遍较低,往往需要在24 h甚至更长反应时间实现~90%亚胺收率.因此仍需开发一些更为高效的非贵金属催化剂用于上述反应.本文以经过硝酸活化处理的有序多孔炭(CMK-3)为载体,制备了负载型氧化铁催化剂(FeOx/HCMK-3),考察了它在苯甲醇与苯胺氧化偶合合成亚胺反应中的催化性能,同时结合一系列表征手段研究了催化剂物理化学性质与其催化性能之间的关系.X射线衍射和氮吸附脱附结果显示,负载后的样品仍然保持了介孔炭原有的孔道结构,没有出现较大的氧化铁粒子;透射电镜、高角暗场扫描透射电镜及能量散射谱结果进一步显示,氧化铁物种相对均匀地分散在载体表面;程序升温还原结果显示,与块体氧化铁相比,FeOx/HCMK-3上的氧化铁物种(FeOx)更易被还原,这可能与氧化铁粒子较小有关.反应结果显示,在空气氛围中FeOx/HCMK-3能够高效催化醇与胺的氧化偶合反应,反应6h亚胺收率即达到98.8%.催化剂具有较高的稳定性,可多次循环使用,没有检测到铁物种流失.此外,FeOx/HCMK-3在多种苯甲醇衍生物与苯胺的氧化偶合反应中都表现出较好的催化性能.结合表征和反应结果可以推测,催化剂上的氧物种参与了反应过程,FeOx/HCMK-3催化剂具有较强的活化氧分子的能力,反应在该催化剂上可能遵循氧化-还原机理.该催化剂上醇与胺氧化偶合反应主要经历两个连续的反应过程:首先苯甲醇被FeOx/HCMK-3催化剂上的活泼氧物种氧化生成苯甲醛中间体;随后,在反应中生成的醛在催化剂上迅速与胺反应生成亚胺化合物,同时催化剂通过与空气中氧分子反应恢复到初始状态,完成整个催化循环.  相似文献   

6.
亚胺是一类重要的含氮有机化合物,广泛应用于生物医药、精细化工和农业生产中.由于其分子中具有不饱和C=N双键,亚胺化合物可以通过不同化学过程(如氧化还原、加成、偶合等)合成多种衍生物.工业上合成亚胺普遍采用羰基化合物与胺偶合反应获得,由于该反应需要强酸作为催化剂和脱水剂,在应用中往往对设备造成不同程度的破坏.选择氧气或空气为氧化剂,通过醇与胺氧化偶合反应合成亚胺,其副产物只有水,是一条较为绿色的合成路线.近期研究表明,均相和负载型贵金属催化剂(如Pd,Pt和Au等)在该反应中表现出较好的低温催化性能,但需要在反应过程中添加大量碱性助剂.一些非贵金属氧化物催化剂如CeO_2和Mn Ox/HAP等在该过程中表现出一定的催化活性,但其催化效率普遍较低,往往需要在24 h甚至更长反应时间实现~90%亚胺收率.因此仍需开发一些更为高效的非贵金属催化剂用于上述反应.本文以经过硝酸活化处理的有序多孔炭(CMK-3)为载体,制备了负载型氧化铁催化剂(FeO_x/HCMK-3),考察了它在苯甲醇与苯胺氧化偶合合成亚胺反应中的催化性能,同时结合一系列表征手段研究了催化剂物理化学性质与其催化性能之间的关系.X射线衍射和氮吸附脱附结果显示,负载后的样品仍然保持了介孔炭原有的孔道结构,没有出现较大的氧化铁粒子;透射电镜、高角暗场扫描透射电镜及能量散射谱结果进一步显示,氧化铁物种相对均匀地分散在载体表面;程序升温还原结果显示,与块体氧化铁相比,FeO_x/HCMK-3上的氧化铁物种(FeO_x)更易被还原,这可能与氧化铁粒子较小有关.反应结果显示,在空气氛围中FeO_x/HCMK-3能够高效催化醇与胺的氧化偶合反应,反应6 h亚胺收率即达到98.8%.催化剂具有较高的稳定性,可多次循环使用,没有检测到铁物种流失.此外,FeO_x/HCMK-3在多种苯甲醇衍生物与苯胺的氧化偶合反应中都表现出较好的催化性能.结合表征和反应结果可以推测,催化剂上的氧物种参与了反应过程,FeO_x/HCMK-3催化剂具有较强的活化氧分子的能力,反应在该催化剂上可能遵循氧化-还原机理.该催化剂上醇与胺氧化偶合反应主要经历两个连续的反应过程:首先苯甲醇被FeO_x/HCMK-3催化剂上的活泼氧物种氧化生成苯甲醛中间体;随后,在反应中生成的醛在催化剂上迅速与胺反应生成亚胺化合物,同时催化剂通过与空气中氧分子反应恢复到初始状态,完成整个催化循环.  相似文献   

7.
 采用沉积-沉淀法制备了不同 Cu 粒子大小的 Cu/MgO 催化剂, 并考察了 Cu 粒子大小对醇类转移脱氢制醛酮反应性能的影响. 结果表明, Cu/MgO 催化剂对一级脂肪醇的转移脱氢反应具有较高的催化活性. 对于 1-辛醇脱氢, 随着 Cu 粒子的粒径由 4.6 nm 增大到 7.4 nm, 1-辛醛的收率由 65% 减小到 55%, 表现出显著的粒子尺寸效应. 反应机理研究表明, 醇首先在碱性 MgO 表面形成醇盐中间物种, 随后在 Cu 纳米粒子上进一步脱去α-氢生成醛酮, 同时脱去的氢在 Cu 纳米粒子上发生苯乙烯加氢反应, 完成醇的转移脱氢反应循环.  相似文献   

8.
Pt纳米粒子由于其本身独特的物理、化学性质以及能够同时促进氧化和还原反应,在工业生产和商业设备中(尤其在直接甲醇燃料电池中)广泛用作重要的电催化剂.然而,Pt作为贵金属在自然界中的含量极其稀少,价格昂贵;另外,甲醇氧化反应中产生的中间产物CO很容易市Pt纳米粒子中毒而失活.因此,迫切需要一种Pt用量少,催化性能高的材料.一制备高活性比表面积的Pt纳米颗粒,可以有效提高Pt利用率.另外,调控纳米粒子使其裸露特定的晶面、边、角以及缺陷也能有效提升催化性能.还可以采用Pt纳米粒子结合其它金属元素形成双金属合金,如,Pt-M (M = Pd,Au,Ag,Ru,Fe,Co,Ni,等)催化剂,可以在减少Pt元素用量的同时有效提升催化活性.在众多可供选择的元素中,Pd相对于Pt价格低廉,但两者具有相近的物理、化学性质以及较高的电催化性能,使Pt-Pd纳米合金呈现十分优异的电催化性能.研究表明,Pt-Pd纳米合金在酸性和CO环境中能有效催化有机小分子电氧化过程.另外,在酸性环境中,用Pd替代Cu,Ag,Co或Ni,可以有效减少催化剂的腐蚀.本文在乙二醇溶液中同时还原K2PtCl4和Na2PdCl4,在110 ℃C反应5 h制备出超细的Pt-Pd纳米合金.通过X射线衍射(XRD)、透射电子显微镜(TEM)、高分辨透射电子显微镜(HRTEM)以及能谱仪(EDS)对合金进行表征,从而确定产物为尺寸4 nm左右的Pt-Pd纳米合金,且通过改变金属前驱体的投料比可以有效调控Pt-Pd合金组分(按元素比例分别表示为Pt1Pd3,Pt1Pd1,Pt3Pd1).采用循环伏安法、线性扫描伏安法以及计时安培法等多种手段测试样品在0.5 mol/L H2SO4和0.5 mol/L CH3OH的酸性环境中(50 mV/s)电化学性能,并与商业Pt/C进行比较.结果表明,合金的催化性能和组分密切相关,当Pt元素的含量为75%左右时,Pt-Pd纳米合金表现出最佳的催化活性和稳定性,其中Pt3Pd1的电催化质量活性可达商业Pt/C的7倍之多.我们把Pt-Pd纳米合金的催化性能对其组分的依赖性归结为甲醇氧化反应中的双官能团机制,反应中,Pt可有效催化甲醇脱氢产生Pt-CO,Pd则催化水脱氢形成Pd-OH.当Pd含量减少时,Pt表面的水脱氢反应只有在高电位才能发生,从而降低催化效率;而Pd含量过多,则会抑制Pt催化甲醇的脱氢反应,使催化效率大大降低.因此,只有适宜Pt/Pd比例,才能有效提升催化效率.  相似文献   

9.
由简单小分子通过 C–C键偶联来构筑复杂多样的大分子是有机合成的重要方向.传统的 C–C键偶联反应一般使用卤代烃和金属有机化合物为底物,具有原子效率低、有害废弃物排放等缺点.因此,迫切需要发展一种绿色高效的 C–C键偶联方法.其中,以醇类化合物作为底物通过“氢转移”(脱氢/aldol缩合/加氢)实现 C–C键偶联的途径受到广泛关注.该方法具有诸多优点:(1)醇类化合物来源广泛、价格低廉、相对安全;(2)只产生 H2和 H2O,没有其它副产物.但由于醇类化合物(特别是仲醇)脱氢困难,该偶联反应条件一般比较苛刻.我们使用 O2来辅助仲醇脱氢,采用离子交换树脂负载的 Au6Pd纳米颗粒为催化剂,实现了温和条件下伯醇和仲醇的偶联反应.而且发现在氧化气氛下,反应过程中发生了“氢转移”现象,产物为饱和酮类化合物.通过设计对照实验并结合 XAFS(X–射线吸收光谱)表征结果,我们揭示了在 Au6Pd/resin催化剂上发生“氢转移”反应的机理. AuPd/resin催化剂采用离子交换–NaBH4还原法制备. TEM照片显示 Au, Pd以及双金属 AuPd纳米颗粒均匀分散在载体上,平均粒径为2–4 nm,而且随着 Au/Pd比例减小, AuPd纳米颗粒的粒径逐渐减小. XRD谱图显示,随着 Au/Pd比例减小, Au(111)衍射峰逐渐向高角度发生偏移,说明 AuPd形成了合金.我们以苯甲醇和(±)-1-苯乙醇氧化偶联为探针反应考察了催化剂的催化性能.结果显示,以 Au/resin和 Pd/resin为催化剂时,产物为不饱和酮.而以 AuPd/resin为催化剂时,转化率显著提高,说明 AuPd之间存在明显的协同作用.而且随着 Au/Pd比例增加,产物逐渐由不饱和酮转变为饱和酮,当 Au/Pd≥6时,产物完全为饱和酮,说明反应过程中发生了“氢转移”.为验证这一推测,我们以苯甲醇和查尔酮为底物在相同条件下反应.结果显示,以 Au/resin和 Pd/resin为催化剂时,查尔酮没有转化.而以 AuPd/resin为催化剂时,查尔酮大部分转化为饱和酮(转化率为91%),验证了反应中发生了“氢转移”的推测.为研究“氢转移”发生的机理,我们采用 XAFS对催化剂价态进行了表征. Pd元素 K边 X射线吸收谱图显示,随着催化剂中 Au/Pd比例的增加,E0值逐渐减小,说明 Pd价态逐渐降低. EXAFS拟合数据表明,随催化剂中 Au/Pd比例增加, Pd–O配位数逐渐减小.基于以上结果推断,在 AuPd/resin催化剂中,随着 Au/Pd比例的增加, Pd的抗氧化能力显著增强,更多的 Pd以 Pd(0)形式存在.结合文献报道结果,我们认为正是催化剂中的 Pd(0)夺取了醇的βC–H后生成了 Pd–H,而 Pd–H是“氢转移”反应的催化剂.另一方面,有文献报道,在氧化气氛下, O2也可以辅助脱除醇的βC–H.为区分 Pd(0)和 O2在脱除醇βC–H中的作用,我们对 Au6Pd/resin在惰性气氛下对伯醇(苯甲醇)或仲醇((±)-1–苯乙醇)转化的催化性能进行了考察.结果显示,苯甲醇可以转化为苯甲酸(收率为23%),而(±)-1–苯乙醇则完全没有转化.这说明伯醇可以直接被催化剂(Pd(0))活化,而仲醇的活化则必须有 O2参与.综上,我们提出伯醇和仲醇氧化偶联反应的机理: Au6Pd/resin催化伯醇转化为醛(同时产生 Pd–H物种),而 O2辅助活化仲醇转化为酮.醛和酮发生 aldol缩合生成α,β不饱和酮,该中间物种被 Pd–H加氢生成饱和产物.  相似文献   

10.
由简单小分子通过C–C键偶联来构筑复杂多样的大分子是有机合成的重要方向.传统的C–C键偶联反应一般使用卤代烃和金属有机化合物为底物,具有原子效率低、有害废弃物排放等缺点.因此,迫切需要发展一种绿色高效的C–C键偶联方法.其中,以醇类化合物作为底物通过"氢转移"(脱氢/aldol缩合/加氢)实现C–C键偶联的途径受到广泛关注.该方法具有诸多优点:(1)醇类化合物来源广泛、价格低廉、相对安全;(2)只产生H_2和H_2O,没有其它副产物.但由于醇类化合物(特别是仲醇)脱氢困难,该偶联反应条件一般比较苛刻.我们使用O_2来辅助仲醇脱氢,采用离子交换树脂负载的Au_6Pd纳米颗粒为催化剂,实现了温和条件下伯醇和仲醇的偶联反应.而且发现在氧化气氛下,反应过程中发生了"氢转移"现象,产物为饱和酮类化合物.通过设计对照实验并结合XAFS(X–射线吸收光谱)表征结果,我们揭示了在Au_6Pd/resin催化剂上发生"氢转移"反应的机理.Au Pd/resin催化剂采用离子交换–Na BH4还原法制备.TEM照片显示Au,Pd以及双金属AuPd纳米颗粒均匀分散在载体上,平均粒径为2–4 nm,而且随着Au/Pd比例减小,Au Pd纳米颗粒的粒径逐渐减小.XRD谱图显示,随着Au/Pd比例减小,Au(111)衍射峰逐渐向高角度发生偏移,说明Au Pd形成了合金.我们以苯甲醇和(±)-1-苯乙醇氧化偶联为探针反应考察了催化剂的催化性能.结果显示,以Au/resin和Pd/resin为催化剂时,产物为不饱和酮.而以Au Pd/resin为催化剂时,转化率显著提高,说明AuPd之间存在明显的协同作用.而且随着Au/Pd比例增加,产物逐渐由不饱和酮转变为饱和酮,当Au/Pd≥6时,产物完全为饱和酮,说明反应过程中发生了"氢转移".为验证这一推测,我们以苯甲醇和查尔酮为底物在相同条件下反应.结果显示,以Au/resin和Pd/resin为催化剂时,查尔酮没有转化.而以Au Pd/resin为催化剂时,查尔酮大部分转化为饱和酮(转化率为91%),验证了反应中发生了"氢转移"的推测.为研究"氢转移"发生的机理,我们采用XAFS对催化剂价态进行了表征.Pd元素K边X射线吸收谱图显示,随着催化剂中Au/Pd比例的增加,E0值逐渐减小,说明Pd价态逐渐降低.EXAFS拟合数据表明,随催化剂中Au/Pd比例增加,Pd–O配位数逐渐减小.基于以上结果推断,在Au Pd/resin催化剂中,随着Au/Pd比例的增加,Pd的抗氧化能力显著增强,更多的Pd以Pd(0)形式存在.结合文献报道结果,我们认为正是催化剂中的Pd(0)夺取了醇的βC–H后生成了Pd–H,而Pd–H是"氢转移"反应的催化剂.另一方面,有文献报道,在氧化气氛下,O_2也可以辅助脱除醇的βC–H.为区分Pd(0)和O_2在脱除醇βC–H中的作用,我们对Au_6Pd/resin在惰性气氛下对伯醇(苯甲醇)或仲醇((±)-1–苯乙醇)转化的催化性能进行了考察.结果显示,苯甲醇可以转化为苯甲酸(收率为23%),而(±)-1–苯乙醇则完全没有转化.这说明伯醇可以直接被催化剂(Pd(0))活化,而仲醇的活化则必须有O_2参与.综上,我们提出伯醇和仲醇氧化偶联反应的机理:Au_6Pd/resin催化伯醇转化为醛(同时产生Pd–H物种),而O_2辅助活化仲醇转化为酮.醛和酮发生aldol缩合生成α,β不饱和酮,该中间物种被Pd–H加氢生成饱和产物.  相似文献   

11.
A ruthenium-grafted hydrotalcite (Ru/HT) and hydrotalcite-supported palladium nanoparticles (Pd(nano)/HT) are easily prepared by treating basic layered double hydroxide, hydrotalcite (HT, Mg(6)Al(2)(OH)(16)CO(3)) with aqueous RuCl(3)n H(2)O and K(2)[PdCl(4)] solutions, respectively, using surface impregnation methods. Analysis by means of X-ray diffraction, and energy-dispersive X-ray, electron paramagnetic resonance, and X-ray absorption fine structure spectroscopies proves that a monomeric Ru(IV) species is grafted onto the surface of the HT. Meanwhile, after reduction of a surface-isolated Pd(II) species, highly dispersed Pd nanoclusters with a mean diameter of about 70 A is observed on the Pd(nano)/HT surface by transmission electron microscopy analysis. These hydrotalcite-supported metal catalysts can effectively promote alpha-alkylation reactions of various nitriles with primary alcohols or carbonyl compounds through tandem reactions consisting of metal-catalyzed oxidation and reduction, and an aldol reaction promoted by the base sites of the HT. In these catalytic alpha-alkylations, homogeneous bases are unnecessary and the only by-product is water. Additionally, these catalyst systems are applicable to one-pot syntheses of glutaronitrile derivatives.  相似文献   

12.
The size of the active phase is one of the most important factors in determining the catalytic behaviour of a heterogeneous catalyst. This Feature Article focuses on the size effects in two types of reactions, i.e., the metal nanoparticle-catalysed dehydrogenation of alcohols and the metal oxide nanocluster-catalysed selective oxidation of hydrocarbons (including the selective oxidation of methane and ethane and the epoxidation of propylene). For Pd or Au nanoparticle-catalysed oxidative or non-oxidative dehydrogenation of alcohols, the size of metal nanoparticles mainly controls the catalytic activity by affecting the activation of reactants (either alcohol or O(2)). The size of oxidic molybdenum species loaded on SBA-15 determines not only the activity but also the selectivity of oxygenates in the selective oxidation of ethane; highly dispersed molybdenum species are suitable for acetaldehyde formation, while molybdenum oxide nanoparticles exhibit higher formaldehyde selectivity. Cu(II) and Fe(III) isolated on mesoporous silica are highly efficient for the selective oxidation of methane to formaldehyde, while the corresponding oxide clusters mainly catalyse the complete oxidation of methane. The lattice oxygen in iron or copper oxide clusters is responsible for the complete oxidation, while the isolated Cu(I) or Fe(II) generated during the reaction can activate molecular oxygen forming active oxygen species for the selective oxidation of methane. Highly dispersed Cu(I) and Fe(II) species also function for the epoxidation of propylene by O(2) and N(2)O, respectively. Alkali metal ions work as promoters for the epoxidation of propylene by enhancing the dispersion of copper or iron species and weakening the acidity.  相似文献   

13.
 以超临界二氧化碳 (scCO2)/聚乙二醇 (PEG) 两相为反应介质, 双齿氮配体功能化聚乙二醇稳定的 Pd 纳米颗粒作为催化剂, 进行了醇的需氧氧化反应. 系统研究了催化剂制备条件和反应条件对苯甲醇需氧氧化反应的影响. 结果表明, 以氢气为还原剂制备的 Pd 纳米粒子的催化活性最高. 反应结束后, 可以利用 scCO2 直接进行原位萃取得到产物, 实现了催化剂与产物的有效分离和催化剂的循环使用. 反应中没有检测到钯的流失. 催化剂经过 5 次循环利用后转化率仍可达 98%.  相似文献   

14.
This paper describes further studies on mono- and bi-metallic catalysts attached to a polymer support by β-di- and tri-ketone surface ligands. The previous two papers described the oxidation of catechol by the heterogeneous catalysts using Cu(II), Fe(III) and Pd(II) as the metal species. The present study expands these studies to a series of mono- and polyfunctional alcohols using Pd(II) as the metal species. The final catalytic surfaces were prepared by treatment of the modified polymer with a very reactive form of Pd(II), [Pd(CH3CN)4]2+. The simple alcohols gave increases in rates of up to 5-fold for the bimetallic systems. As might be expected glycols and - -glucose gave even higher increases in rate in going from the mono- to the bi-metallic catalyst. For ethylene glycol the factor was 30. Unsaturated alcohols gave the most dramatic results. With the monometallic catalyst, the products from allyl alcohol consisted of 25% acrolein resulting from direct alcohol oxidation and 75% 3-hydroxypropanal resulting from Wacker-type oxidation of the double bond. With the bimetallic catalyst the overall rate increased by a factor of 10 and the products consisted of 80% acrolein and 20% 3-hydroxypropanal. The actual rate increase for the direct alcohol oxidation is calculated to be a factor of 32. 4-Penten-2-ol and 4-penten-1-ol gave rates that were lower than the monofunctional alcohols. This is attributed to inhibition by olefin π-complex formation with the Pd(II).  相似文献   

15.
We have developed a highly efficient heterogeneous catalytic system using hydrotalcite-supported Cu nanoparticles (Cu/HT) that can successfully promote the oxidant-free dehydrogenation of various alcohols under liquid-phase conditions.  相似文献   

16.
The oxidative dehydrogenation of alcohols to aldehydes catalyzed by Ag nanoparticles supported on Al_2O_3 was studied.The catalyst promoted the direct formation of imines by tandem oxidative dehydrogenation and condensation of alcohols and amines.The reactions were performed under mild conditions and afforded the imines in high yield(up to 99%) without any byproducts other than H_2O.The highest activity was obtained over 5 wt%Ag/Al_2O_3 in toluene with air as oxidant.The reactions were also performed under oxidant-free conditions where the reaction was driven to the product side by the production of H_2 in the gas phase.The use of an efficient and selective Ag catalyst for the oxidative dehydrogenation of alcohol in the presence of amines gives a new green reaction protocol for imine synthesis.  相似文献   

17.
以球状聚苯并噁嗪为载体, 采用浸渍热解法合成了钯炭纳米催化剂. 通过透射电子显微镜观察发现, 钯纳米粒子几乎全部均匀分布在载体上, 且尺寸均一, 平均直径约为3.5 nm. 结果表明, 载体表面含有丰富的含氮含氧官能团, 氮和氧原子与钯之间存在相互作用, 从而使聚苯并噁嗪能够有效固载钯纳米粒子. 采用相同的方法进一步合成Pd-Au/C和Pd-Pt/C双金属催化剂, Pd-Au和Pd-Pt纳米粒子也展现出良好的分散性, 无明显团聚现象, 平均直径分别为4.3和4.2 nm, 进一步说明聚苯并噁嗪对金属活性组分的有效固载. 将催化剂应用于苯甲醇氧化反应, 其中Pd1-Au1/C在2 h的转化率为98%, 对产物苯甲醛的选择性大于99%, 该催化剂经过焙烧可恢复催化活性, 表现出良好的循环稳定性, 并能将不同取代基的芳香醇氧化为相应的醛, 是一种良好的醇氧化催化剂.  相似文献   

18.
Gold nanoparticles with uniform mean sizes (≈3 nm) loaded onto various supports have been prepared and studied for the oxidant-free dehydrogenation of benzyl alcohol to benzaldehyde and hydrogen. The use of hydrotalcite (HT), which possesses both strong acidity and strong basicity, provides the best catalytic performance. Au/HT catalysts with various mean Au particle sizes (2.1-21 nm) have been successfully prepared by a deposition-precipitation method under controlled conditions. Detailed catalytic reaction studies with these catalysts demonstrate that the Au-catalyzed dehydrogenation of benzyl alcohol is a structure-sensitive reaction. The turnover frequency (TOF) increases with decreasing Au mean particle size (from 12 to 2.1 nm). A steep rise in TOF occurs when the mean Au particle size becomes smaller than 4 nm. Our present work suggests that the acid-base properties of the support and the size of Au nanoparticles are two key factors controlling the alcohol dehydrogenation catalysis. A reaction mechanism is proposed to rationalize these results. It is assumed that the activation of the β-C-H bond of alcohol, which requires the coordinatively unsaturated Au atoms, is the rate-determining step.  相似文献   

19.
The oxidative dehydrogenation of alcohols to aldehydes catalyzed by Ag nanoparticles supported on Al2O3 was studied.The catalyst promoted the direct formation of imines by tandem oxidative dehydrogenation and condensation of alcohols and amines.The reactions were performed under mild conditions and afforded the imines in high yield(up to 99%) without any byproducts other than H2O.The highest activity was obtained over 5 wt%Ag/Al2O3 in toluene with air as oxidant.The reactions were also performed under oxidant-free conditions where the reaction was driven to the product side by the production of H2 in the gas phase.The use of an efficient and selective Ag catalyst for the oxidative dehydrogenation of alcohol in the presence of amines gives a new green reaction protocol for imine synthesis.  相似文献   

20.
Alternating adsorption of poly(acrylic acid) and a polyethylenimine-Pd(II) complex on alumina and subsequent reduction of Pd(II) by NaBH4 yield catalytic Pd nanoparticles embedded in multilayer polyelectrolyte films. The polyelectrolytes limit aggregation of the particles and impart catalytic selectivity in the hydrogenation of alpha-substituted unsaturated alcohols by restricting access to catalytic sites. Hydrogenation of allyl alcohol by encapsulated Pd(0) nanoparticles can occur as much as 24-fold faster than hydrogenation of 3-methyl-1-penten-3-ol. Additionally, the nanoparticle/polyelectrolyte system suppresses unwanted substrate isomerization, when compared to a commercial palladium catalyst. Selective diffusion through poly(acrylic acid)/polyethlyenimine membranes suggests that hydrogenation selectivities are due to different rates of diffusion to nanoparticle catalysts. First-order kinetics are also consistent with a diffusion-limited mechanism. Further exploitation of the versatility of polyelectrolyte films should increase selectivity in hydrogenation as well as other reactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号