首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Cu ion implantation and subsequent rapid annealing at 500℃in N_2 result in low surface resistivity of 1.611 ohm/sq with high mobility of 290 cm~2 V~(-1)S~(-1)for microcrystalline diamond(MCD)films.Its electrical field emission behavior can be turned on at E_0=2.6 V/μm,attaining a current density of 19.5μA/cm~2 at an applied field of 3.5 V/μm.Field emission scanning electron microscopy combined with Raman and x-ray photoelectron microscopy reveal that the formation of Cu nanoparticles in MCD films can catalytically convert the less conducting disorder/a-C phases into graphitic phases and can provoke the formation of nanographite in the films,forming conduction channels for electron transportation.  相似文献   

2.
TlBa_2 Ca_2 Cu_3 O_9(Tl-1223) films have promising applications due to their high critical temperature and strong magnetic flux pinning. Nevertheless, the preparation of pure phase Tl-1223 film is still a challenge. We successfully fabricate Tl-1223 thin films on LaAlO_3(001) substrates using dc magnetic sputtering and a post annealing two-step method in argon atmosphere. The crystallization temperature of Tl-1223 films in argon is reduced by 100℃ compared to that in oxygen. This greatly reduces the volatilization of Tl and improves the surface morphology of films. The lower annealing temperature can effectively improve the repeatability of the Tl-1223 film preparation. In addition, pure Tl-1223 phase can be obtained in a broad temperature zone,from 790℃ to 830℃. In our study, the films show homogenous and dense surface morphology using the presented method. The best critical temperature of Tl-1223 films is characterized to be 110 K, and the critical current J_c(77 K, 0 T) is up to 2.13 × 106 A/cm~2.  相似文献   

3.
SiC films were prepared by pulsed XeCl laser ablation of ceramic SiC target on Si(100) substrate at temperature 850℃ and post-deposition high temperature annealing above 1100℃ (1100℃-7 Pa). The surface morphology, crystal structure, composition and chemical state of the element in the films before and after annealing were studied by X-ray diffraction, transmission electron microscopy, scanning electron microscopy, Auger electron Spectrum, X-ray photoelectron spectrum and photoluminescence methods. It was found that the films were consisted of polycrystal 4H-SiC structure before annealing and were turned into singlecrystal epitaxial 4H-SiC after annealing. The surfaces of the films were smooth and the adhesion of films with the substrate was good. The films were transparent. Excited by the laser with wavelength 290 nm at room temperature, the films emitted two luminescence bands with the peaks at 377 nm and 560 nm. The emission at 377 nm was attributed to the combination of the transmission among the valence and conductor bands, while the one at 560 nm was possibly to be from exciton emission.  相似文献   

4.
Amorphous Er 2 O 3 films are deposited on Si (001) substrates by using reactive evaporation.This paper reports the evolution of the structure,morphology and electrical characteristics with annealing temperatures in an oxygen ambience.X-ray diffraction and high resolution transimission electron microscopy measurement show that the films remain amorphous even after annealing at 700 C.The capacitance in the accumulation region of Er 2 O 3 films annealed at 450 C is higher than that of as-deposited films and films annealed at other temperatures.An Er 2 O 3 /ErO x /SiO x /Si structure model is proposed to explain the results.The annealed films also exhibit a low leakage current density (around 1.38 × 10 4 A/cm 2 at a bias of 1 V) due to the evolution of morphology and composition of the films after they are annealed.  相似文献   

5.
By vacuum sputtering and annealing processes of gold(Au) films on boron-doped diamond(BDD) surfaces, Aunanoparticles/BDD(AuNP/BDD) composite substrates were prepared as surface-enhanced Raman scattering(SERS) substrates. The SERS performances of the substrate were investigated using methylene blue molecule as a probe. With the AuNPs having an average diameter of 20 nm, high performance of SERS was achieved at an enhancement factor of 9 × 10~5, arising from the synergistic effect of electromagnetic enhancement from Au NPs and chemical enhancement from diamond. The AuNP/BDD substrate is demonstrated to be highly sensitive, reproducible, stable, and reusable for the SERS examination. Due to the facile preparation process and controllable surface morphology, the AuNP/BDD substrates are favorable as a high performance SERS platform performed in practical applications.  相似文献   

6.
We report on a new method to prepare large quantity single-walled carbon nanotubes(SWCNTs) with high purity.Using a Y-Ni powder composite graphite rod as an anode,at a given angle with the high-purity graphite cathode rod,a cloth-like deposit can be obtained by dc arc discharge in helium at high temperature,which contains about 60% SWCNTs.In this way,we can obtain a deposit of more than one gram in ten minutes.Transmission electron microscopy and Raman scattering have been used to observe the structure and morphology of the SWCNTs.  相似文献   

7.
WO3 thin films were sputtered onto alumina substrates by DC facing-target magnetron sputtering.One sample was rapid-thermal-annealed(RTA) at 600℃ in a gas mixture of N2:O2=4:1,and as a comparison,another was conventionally thermal-annealed at 600℃ in air.The morphology of both was investigated by scanning electron microscopy(SEM) and atomic force microscopy(AFM),and the crystallization structure and phase identification were characterized by X-ray diffraction(XRD).The NO2-sensing measurements were taken under LED light at room temperature.The sensitivity of the RTA-treated sample was found to be high,up to nearly 100,whereas the sensitivity of the conventionally thermal-annealed sample was about five under the same conditions.From the much better selectivity and response-recovery characteristics,it can be concluded that compared to conventional thermal annealing,RTA has a greater effect on the NO2-sensing properties of WO3 thin films.  相似文献   

8.
Buffer layer provides an opportunity to enhance the quality of ultrathin magnetic films.In this paper,Co films with different thickness of Co Si2buffer layers were grown on Si(001)substrates.In order to investigate morphology,structure,and magnetic properties of films,scanning tunneling microscope(STM),low energy electron diffraction(LEED),high resolution transmission electron microscopy(HRTEM),and surface magneto-optical Kerr effect(SMOKE)were used.The results show that the crystal quality and magnetic anisotropies of the Co films are strongly affected by the thickness of Co Si2buffer layers.Few Co Si2monolayers can prevent the interdiffusion of Si substrate and Co film and enhance the Co film quality.Furthermore,the in-plane magnetic anisotropy of Co film with optimal buffer layer shows four-fold symmetry and exhibits the two-jumps of magnetization reversal process,which is the typical phenomenon in cubic(001)films.  相似文献   

9.
刘芳  王涛  沈波  黄森  林芳  马楠  许福军  王鹏  姚建铨 《中国物理 B》2009,18(4):1618-1621
Recently GaN-based high electron mobility transistors (HEMTs) have revealed the superior properties of a high breakdown field and high electron saturation velocity. Reduction of the gate leakage current is one of the key issues to be solved for their further improvement. This paper reports that an Al layer as thin as 3 nm was inserted between the conventional Ni/Au Schottky contact and n-GaN epilayers, and the Schottky behaviour of Al/Ni/Au contact was investigated under various annealing conditions by current--voltage (I--V) measurements. A non-linear fitting method was used to extract the contact parameters from the I--V characteristic curves. Experimental results indicate that reduction of the gate leakage current by as much as four orders of magnitude was successfully recorded by thermal annealing. And high quality Schottky contact with a barrier height of 0.875 eV and the lowest reverse-bias leakage current, respectively, can be obtained under 12 min annealing at 450°C in N2 ambience.  相似文献   

10.
The effects of annealing rate and morphology of sol–gel derived zinc oxide(ZnO)thin films on the performance of inverted polymer solar cells(IPSCs)are investigated.ZnO films with different morphologies are prepared at different annealing rates and used as the electron transport layers in IPSCs.The undulating morphologies of ZnO films fabricated at annealing rates of 10 C/min and 3 C/min each possess a rougher surface than that of the ZnO film fabricated at a fast annealing rate of 50 C/min.The ZnO films are characterized by atomic force microscopy(AFM),optical transmittance measurements,and simulation.The results indicate that the ZnO film formed at 3 C/min possesses a good-quality contact area with the active layer.Combined with a moderate light-scattering,the resulting device shows a 16%improvement in power conversion efficiency compared with that of the rapidly annealed ZnO film device.  相似文献   

11.
有机聚合物受体给体复合体薄膜光伏电池性能研究   总被引:4,自引:0,他引:4       下载免费PDF全文
提出了用一种新的有机物-聚合物复合体薄膜制备受体给体聚合物光伏电池的思路,用于克服由于激子或极化子扩散范围短而熄灭造成的电荷分离与传输效率低的缺陷.在采用对称N,N′-二苯并咪唑3,4,9,10-四羧酸二亚酰胺和聚(2,5-二十五烷氧基对-苯撑乙烯)(ROPPV)为原材料制备成复合体薄膜,对其电学、光学及用其制作的光伏电池的性能进行了讨论.结果显示了导电聚合物-有机物复合体可代表一类新的有机半导体材料用于制造光伏电池 关键词: 有机光伏电池 有机染料 共轭聚合物 异质结  相似文献   

12.
Thin hetero‐junction composite films of polymer (electron donor) and fullerene (electron acceptor) are prepared on indium‐tin‐oxide coated glass by spin‐coating from solution in dichlorobenzene. Optimized atomic force microscopy (AFM) parameters allowed us to scan these soft composite films in contact mode and to measure their local conductivity with high lateral resolution by current‐sensing AFM. The morphology and local conductivity data are correlated with Kelvin force microscopy and micro‐Raman mapping and discussed with view to their photovoltaic properties. Regions with both compounds present are compared to areas where the components segregated, acting as shunts of the junction. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

13.
A series of cauliflower-like TiO2-ZnO composite porous films with various molar ratios of Zn/Ti were prepared by the screen printing technique on the fluorine-doped SnO2 (FTO) conducting glasses. The composite films were characterized by field-emission scanning electron microscopy (FE-SEM), X-ray energy-dispersive spectrometry (EDS) and UV-vis transmittance spectrum. The results showed composite film electrode had a novel cauliflower-like morphology, which could effectively increase the dye absorption. The corresponding dye-sensitized solar cells (DSCs) were made by the composite film, and effects of ZnO incorporation on the photovoltaic performances of the DSCs were studied. With the Zn/Ti molar ratio not more than 3% in ZnO-TiO2 composite film of about 5 μm-thickness, the photocurrent density (Jsc) and the solar-to-electricity conversion efficiency (η) were greatly improved compared with those of the DSC based on bare TiO2 film of same thickness. This increases in efficiency and Jsc were attributed to high electron conductivity of ZnO, the improved dye adsorption and large light transmittance of composite film.  相似文献   

14.
Polypyrrole (PPy)–indium phosphide (InP) composite material was electrochemically prepared by the incorporation of InP into a PPy matrix during electrochemical synthesis (cycling) under magnetic stirring from the acetonitrile/LiClO4 electrolyte containing the Py and InP particles. The PPy–InP composite material was designed to explore new approaches to improve light-collection efficiency in polymer photovoltaic. The samples were characterised by cyclic voltammetry, impedance spectroscopy measurement, scanning electron microscopy, energy dispersive X-ray spectroscopy, UV–visible and photoelectrochemical measurements. It was observed that the photocurrent of the composites was higher than that of the single PPy films and increased with InP concentration. The study showed that the presence of InP particles in the polymeric film improves the optical and the photovoltaic properties of PPy and give information on the use possibility of these films for photovoltaic cells' application.  相似文献   

15.
The role of organic capping ligand of semiconductor nanoparticles in dictating the interfacial charge transfer processes in hybrid semiconductor nanoparticles/polymer-based photovoltaic devices is investigated. Morphology, optical and structural study of the CdS nanoparticles and the hybrid material were accomplished using X-ray diffraction (XRD), absorption (UV–vis), atomic force microscopy (AFM), transmission electron microscopy (TEM), photoluminescence (PL) and time resolved photoluminescence spectroscopy (PLRT). A broad band absorption in UV–visible region and considerable fluorescence quenching of MEH-PPV in the composites are noted indicating a photo-induced charge transfer and dissociation of excitons. Time-resolved photoluminescence measurements indicating decreased lifetime further confirm this process. The solar cells open-circuit voltage and short-circuit current were improved using thiophenol modified CdS nanoparticles as electron acceptor in comparison to MEH-PPV only device demonstrating a promising approach to enhance charge transport in the hybrid nanoparticles–polymer composite photovoltaic cells (PV).  相似文献   

16.
Sodium ion conducting solid polymer blend electrolyte thin films have been prepared by using polyvinyl alcohol (PVA)/poly(vinyl pyrrolidone) (PVP) with NaNO3 by solution cast technique. The prepared films were characterized by various methods. The complexation of the salt with the polymer blend was identified by X-ray diffraction (XRD) and Fourier transforms infrared spectroscopy (FTIR), Differential scanning calorimetry was used to analyze the thermal behavior of the samples, and the glass transition temperature is low for the highest conducting polymer material. The scanning electron microscopy gives the surface morphology of the polymer electrolytes. The frequency and temperature dependent of electrical conductivities of the films were studied using impedance analyzer in the frequency range of 1 Hz to 1 MHz. The highest electrical conductivity of 50PVA/50PVP/2 wt% NaNO3 concentration has been found to be 1.25 × 10?5 S cm?1 at room temperature. The electrical permittivity of the polymer films have been studied for various temperatures. The transference number measurements showed that the charge transport is mainly due to ions than electrons. Using this highest conducting polymer electrolyte, an electrochemical cell is fabricated and the parameters of the cells are tabulated.  相似文献   

17.
We have investigated the optical, electrical and photovoltaic properties of devices based on 1,2-diazoamino diphenyl ethane (DDE) and poly(3-phenyl hydrazone thiophene) (PPHT):DDE blend. It is observed from the J-V characteristics of the Al/DDE/ITO (ITO—indium tin oxide) device that the electron current injected from Al contact was shown to be space charge limited (SCL), indicating that Al forms nearly ohmic contact for electron injection into lowest unoccupied molecular orbital (LUMO) of DDE. The effect of thermal annealing and composition, on the optical, electrical and photovoltaic response of blend of PPHT and DDE sandwiched between a transparent ITO electrode and an Al back contact are investigated. The observed absorption quenching in the PPHT:DDE blend is attributed to the disordering of PPHT chains and charge transfer between PPHT and DDE as evidenced by FTIR spectra. The observed red shift in the absorption peak on thermal annealing is due to the improvement in the ordering and increases in conjugation length in PPHT. The observed dark current-voltage curves agree well with trap-controlled SCL transport theory. The photophysics of the blend material and influence of thermal annealing on the performance and morphology of these devices were discussed. Annealing process results in the formation of PPHT:DDE complex and increase in the ordering of polymer chain, that increases the incident photon to current efficiency (IPCE) and power conversion efficiency of the photovoltaic devices.  相似文献   

18.
Ag2Cu2O3 films were deposited on glass substrates by reactive sputtering of a composite silver-copper target. The deposited films were annealed in air at 100, 200 and 300 °C. The structure of the films was studied using X-ray diffraction (XRD), their surface morphology was characterised using scanning electron microscopy (SEM) and their electrical resistivity at room temperature was measured using the four point probe method. The 100 °C annealing did not modify either the film structure or the film morphology. On the other hand, Ag2Cu2O3 films were partially decomposed into Ag and CuO after a 200 °C annealing. The decomposition was complete for a 300 °C annealing. The evolution of the film surface morphology as a function of the annealing temperature was discussed in connection to the evolution of the molar volume of the phases constituting the films.  相似文献   

19.
屈俊荣  郑建邦  吴广荣  曹崇德 《发光学报》2013,34(11):1511-1516
利用原位缩合法制备了聚(2-甲氧基-5辛氧基)对苯乙炔(MOPPV)-ZnSe量子点复合材料,通过对复合材料的X射线衍射、透射电子显微镜、扫描电子显微镜、紫外可见吸收光谱等研究,发现聚合物MOPPV与ZnSe量子点以包覆形式有效地复合在一起,复合材料中ZnSe量子点结晶性良好,尺寸约为4 nm;且两者之间发生光诱导电荷转移,复合材料随着退火温度的升高,其吸收光谱范围发生红移。通过对MOPPV-ZnSe复合材料光电性能的研究发现,复合材料光电性能随着退火温度的升高逐渐表现出明显的二极管特性,转换效率出现先增大后减小的趋势,且在160℃时转换效率达到最大为0.3726%。  相似文献   

20.
采用磁控溅射法制备出透明导电氧化物NiO薄膜.椭偏(SE)测试表明NiO薄膜在可见光区域透光性良好,通过调节生长、退火温度可调控NiO的折射率.采用X射线衍射(XRD)、扫描电子显微镜(SEM)手段研究表明,通过退火、改变衬底温度等,可有效改变NiO薄膜的晶体结构以及表面形貌,实现对NiO导电性的调控. 采用优化后的NiO材料为阳极阻挡层制备出的聚合物太阳能电池器件的效率为2.26%,是同等条件下采用 PEDOT:PSS阻挡层的电池器件的3倍以上.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号