首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 437 毫秒
1.
第二类拓扑外尔半金属WP2高压下发生超导转变,然而,高压超导相能否在常压截获还没有相关报道.本文对密封于金刚石对顶砧中的WP2高压超导相在室温条件下快速卸压至不同压强,原位测量电阻-温度曲线,验证能否在常压截获高压超导相.研究表明:WP2的高压超导相可以在常压截获,从而提供了一个通过角分辨光电子能谱和扫描隧道谱探寻马约拉纳零能模的拓扑超导体材料平台.  相似文献   

2.
使用第一性原理方法,研究了拓扑材料MoP在高压下的电子结构和晶格动力学行为.高压下MoP的晶体结构和费米面附近的电子能带相对稳定,但是声子能谱以及电声子耦合参数随着压强的增大有明显的变化.声子谱中高频光学支逐渐硬化,低频声学支中也有部分出现明显软化,体系的电声子耦合随压强的增大而逐步变强,导致超导转变温度从常压下的零提高到30 GPa时的0.16 K,最后在50 GPa时提高到1.21 K,与实验的变化趋势基本一致.研究揭示了高压下MoP中出现的超导现象主要是电声子耦合造成的,为理解实验观测到的拓扑超导共存现象提供了一定的理论支持.  相似文献   

3.
通过高压电阻测量,发现了拓扑绝缘体化合物BizTe3压力诱导的超导性,在3-6GPa的压力范围内,超导临界温度L约为3K.高压下原位同步辐射的结果证明这个超导相来源于常压相结构.通过霍尔效应的测量,发现超导的Bi2Te3样品的载流子为P型.对高压同步辐射结果Reitveld精修得到的晶格参数和原子位置,并以此进行第一性...  相似文献   

4.
实验采用常压和高压分别制备出含铁的FexCu1-xBaSrYCu2Oy(x= 0~1)系列化合物,本文主要研究x=0.5时样品的结构和超导电性.测量结果显示,高压合成的样品均具有超导电性,对于x=0.5的样品超导转变温度Tc(onset)~57K, Tc(0)~40K,而常压合成的样品当Fe含量x>0.3时均不超导.为此,我们利用透射电子显微镜(TEM)研究了该体系的微观结构特性,并通过电子能量损失谱(EELS)揭示出高压合成导致样品中载流子浓度明显高于常压样品,证明样品制备过程中高压有利于超导电性的形成.同时对高压样品中的缺陷和局域晶体结构畸变进行了深入分析.  相似文献   

5.
本文在高T_c超导体Bi_1Sr_1Ca_1Cu_2O_y常压制备的基础上,研究了热压烧结和冷压处理对其形成、结构及超导电性的影响,并与常压结果进行了比较。结果表明,高压可以使样品的合成时间缩短,合成温度降低。但同时它也抑制了晶格参数较大的相(高T_c相)的形成,使小晶格参数的杂相含量增多。对于提高样品的超导电性而言,1.5 GPa是一个较好的压力点。  相似文献   

6.
 本文在高Tc超导体BiSrCaCu2Oy常压制备的基础上,研究了热压烧结和冷压处理对其形成、结构及超导电性的影响,并与常压结果进行了比较。结果表明,高压可以使样品的合成时间缩短,合成温度降低。但同时它也抑制了晶格参数较大的相(高Tc相)的形成,使小晶格参数的杂相含量增多。对于提高样品的超导电性而言,1.5 GPa时一个较好的压力点。  相似文献   

7.
 系统地研究了在0~3 MPa氧压下T1系超导材料的制备过程及其超导性质。结果表明:0.25~0.90 MPa氧压下所制备的样品为纯2223相,Tc0最高可达125.3 K;1.45~3.00 MPa氧压下样品为纯2212相,Tc0在95~100 K之间;0.90~1.45 MPa氧压下样品为2223及2212两相共存。对两种单相样品的高压研究结果表明,2223相样品比2212相样品有着较强的压力效应,在0~0.52 GPa压力下分别为4.0 K/GPa及2.0 K/GPa。  相似文献   

8.
FePSe3在高压下会出现半导体到金属的转变、超导电性以及高自旋到低自旋的转变等多种有趣的物理现象,但目前对其在高压下的晶体结构分析仍以理论研究为主,结构的不确定阻碍了对其物理性质的深入研究。为此,利用金刚石对顶砧结合高压拉曼光谱、高压同步辐射X射线衍射以及高压电输运测量,对FePSe3在高压下的行为进行了研究。结果表明,FePSe3在低于60.0 GPa的压力范围内经历了3次结构相变,完成了LP—HP1—HP2—HP3的转变。首次在实验上观测到FePSe3的高压新相HP2和HP3,并给出其可能的空间对称群。HP2相和HP3相具有超导电性,超导温度随压力的升高而降低,致使超导相图呈现“穹顶”状。研究结果为进一步厘清FePSe3的压致相变行为提供了重要的实验支撑。  相似文献   

9.
随着高压实验设备与技术的不断发展,压力作为对物质状态调控的独立变量在凝聚态物理研究中得到了越来越广泛的应用.高压研究对发现新材料、新现象、新规律及对其形成机理的理解和对相关理论的验证起到了不可替代的重要作用,近年来在对铁基超导体超导电性的高压研究中取得的诸多重要研究进展充分说明了这一点.本文简要介绍了在压力下铁砷基超导体中呈现出的一些有趣的物理现象及其所反映出的物理内涵,例如,压力下对1111体系超导电性的研究在指导常压下用小离子半径元素替代获得最高超导转变温度的铁砷基超导体和推测铁砷基超导体超导转变温度上限等方面起到了重要作用;压力可抑制122体系母相的磁有序进而诱发超导电性,并揭示出Eu-122体系中Eu离子插层的磁有序与FeAs层超导电性的关系;在新型铁砷基超导体Ca_(0.73)La_(0.27)FeAs_2中发现的压致双临界点现象等.希望本文能对读者了解铁砷基超导体的高压研究进展情况有所帮助.  相似文献   

10.
 采用同步辐射X光源和能散法,对CsBr粉末样品进行高压原位X光衍射实验。由金刚石对顶压砧高压装置(DAC)产生高压,用已知状态方程的Pt粉末作内标,由Pt的衍射数据确定样品压力,最高压力达64.4 GPa。实验结果表明:室温常压下原始CsBr样品是具有简单立方结构的晶体,其晶格常数α=0.428 5 nm。高压下CsBr的结构有所变化,在51.3~58.4 GPa的压力范围内,(110)线和(211)线发生劈裂,从而形成了四方相。  相似文献   

11.
By applying pressure on the topological insulator Bi2Te3 single crystal, superconducting phase was found without a crystal structure phase transition. The new superconducting phase is under the pressure range of 3 GPa to 6 GPa. The high pressure Hall effect measurements indicated that the superconductivity caused by bulk hole pockets. The high pressure structure investigations with synchrotron X-ray diffraction indicated that the superconducting phase is of similar structure to that of ambient phase structure with only slight change with lattice parameter and internal atomic position. The topological band structures indicate the superconducting phase under high pressure remained topologically nontrivial. The results suggested that topological superconductivity can be realized in Bi2Te3 due to the proximity effect between superconducting bulk states and Diractype surface states. We also discussed the possibility that the bulk state could be a topological superconductor.  相似文献   

12.
 本文为两个单相超导氧化物体系NdBa2Cu3Ox和(Bi,Pb)2Sr2Ca2Cu3Oy分别做了低温、常温和高温下的高压观察。发现超导转变温度均随压力的增加而提高;在两个体系中都观察到1.0 GPa附近正常态电阻的突增,它们都对应于Tc增加的变缓。对NdBa2Cu3Ox所做的高压DTA显示,从高温四方相到超导正交相的转变为压力提前,表明高压对超导相结构的稳定性产生有利影响。  相似文献   

13.
黄晓丽  李芳菲  黄艳萍  吴刚  李鑫  周强  刘冰冰  崔田 《中国物理 B》2016,25(3):37401-037401
The high-pressure behavior of solid hydrogen has been investigated by in situ Raman spectroscopy upon compression to 300 GPa at ambient temperature. The hydrogen vibron frequency begins to decrease after it initially increases with pressure up to 38 GPa. This softening behavior suggests the weakening of the intramolecular bond and the increased intermolecular interactions. Above 237 GPa, the vibron frequency softens very rapidly with pressure at a much higher rate than that of phase III, corresponding to transformation from phase III into phase IV. The phase transition sequence has been confirmed from phase I to phase III and then to phase IV at 208 and 237 GPa, respectively. Previous theoretical calculations lead to the proposal of an energetically favorable monoclinic C2/c structure for phase III and orthorhombic Pbcn structure for phase IV. Up to 304 GPa, solid hydrogen is not yet an alkali metal since the sample is still transparent.  相似文献   

14.
The kagome metals AV3Sb5(A=K,Rb,Cs)under ambient pressure exhibit an unusual charge order,from which superconductivity emerges.In this work,by applying hydrostatic pressure using a liquid pressure medium and carrying out electrical resistance measurements for RbV3Sb5,we find that the charge order becomes suppressed under a modest pressure pc(1.4 GPa3Sb5.Our findings point to qualitatively similar temperature-pressure phase diagrams in KV3Sb5 and RbV3Sb5,{and suggest a close link}between the second superconducting dome and the high-pressure resistance anomalies.  相似文献   

15.
郭静  孙力玲 《物理学报》2015,64(21):217406-217406
在凝聚态物理研究中, 压力作为对物质状态调控的独立变量得到了广泛的应用. 压力对发现物质的新现象、新规律及对其形成机理的理解和对相关理论的验证起到了重要的作用, 尤其在超导电性的研究中取得了巨大的成功. 文章简要的介绍了通过利用压力手段对具有相分离结构的碱金属铁硒基超导体AxFe2-ySe2 (A=K, Rb, Tl/Rb)开展的系列研究所取得的实验结果, 以及其他一些文献中报道的在此方面的主要实验与理论研究工作, 包括压力导致的超导再进入现象和其产生的量子临界机理、其特有的反铁磁绝缘体相在该类超导体实现超导电性中的作用、化学负压力对超导电性的影响、构成该类超导体的反铁磁序与其寄居的超晶格的关系等.  相似文献   

16.
利用原位高压拉曼散射和X射线衍射技术,研究了KBrO3在高压下晶格振动和晶体结构演化行为.最高压力达30.9 GPa.通过拉曼光谱发现,在高压下拉曼峰位除了单调移动,没有其它变化,表明KBrO3在研究的压力范围没有发生相变.原位高压X射线衍射实验数据显示,其在高压下依然保持常压的六方结构.通过进一步分析,分别得到了体弹模量B0=25.9(2) GPa(B′0=5.68(0.38))和部分拉曼峰的Grüneisen参数.  相似文献   

17.
We report here high-pressure x-ray diffraction (XRD) studies on tellurium (Te) at room temperature up to 40 GPa in the diamond anvil cell (DAC). The XRD measurements clearly indicate a sequence of pressure-induced phase transitions with increasing pressure. The data obtained in the pressure range 1 bar to 40 GPa fit five different crystalline phases out of Te: hexagonal Te (I) → monoclinic Te(II) → orthorhombic Te (III) → Β-Po-type Te(IV) → body-centered-cubic Te(V) at 4, 6.2, 11 and 27 GPa, respectively. The volume changes across these transitions are 10%, 1.5%, 0.3% and 0.5%, respectively. Self consistent electronic band structure calculations both for ambient and high pressure phases have been carried out using the tight binding linear muffin tin orbital (TB-LMTO) method within the atomic-sphere approximation (ASA). Reported here apart from the energy band calculations are the density of states (DOS), Fermi energy (E f) at various high-pressure phases. Our calculations show that the ambient pressure hexagonal phase has a band gap of 0.42 eV whereas high-pressure phases are found to be metallic. We also found that the pressure induced semiconducting to metallic transition occurs at about 4 GPa which corresponds to the hexagonal phase to monoclinic phase transition. Equation of state and bulk modulus of different high-pressure phases have also been discussed.  相似文献   

18.
Qun Chen 《中国物理 B》2022,31(5):56201-056201
Pressure is an effective and clean way to modify the electronic structures of materials, cause structural phase transitions and even induce the emergence of superconductivity. Here, we predicted several new phases of the ZrXY family at high pressures using the crystal structures search method together with first-principle calculations. In particular, the ZrGeS compound undergoes an isosymmetric phase transition from P4/nmm-I to P4/nmm-II at approximately 82 GPa. Electronic band structures show that all the high-pressure phases are metallic. Among these new structures, P4/nmm-II ZrGeS and P4/mmm ZrGeSe can be quenched to ambient pressure with superconducting critical temperatures of approximately 8.1 K and 8.0 K, respectively. Our study provides a way to tune the structure, electronic properties, and superconducting behavior of topological materials through pressure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号