首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
基于第一性原理的赝势平面波方法计算了完整YTaO4和LuTaO4晶体的电子结构、介电函数、折射率、吸收光谱.计算结果表明,二者价带的贡献都主要来源于O2p态.导带分为两部分,下导带都主要由Ta5d态组成,YTaO4上导带主要由Y4d态组成.而LuTaO4上导带的贡献主要来源于Lu5d态.在ω=0时,YTaO4和LuTaO4晶体的介电常数和折射率都非常接近;介电函数虚部的低能特征峰(小于10.0 eV)归因于TaO3-4基团的电子跃迁,对应电子从O2p价带到Ta5d导带的跃迁;10.0~15.0 eV之间的特征峰对应于电子从价带到上导带的跃迁;大于15.0 eV的特征峰则归因于O2s态的内层电子到导带的跃迁.两种晶体在紫外区的吸收带宽而强,此吸收带归属于从氧(2p)到钽d0离子的电荷转移跃迁.  相似文献   

2.
采用基于密度泛函理论(DFT)框架下广义梯度近似平面波超软赝势方法,计算了Ta2O5的电子结构、态密度和和光学性质。能带结构计算表明,Ta2O5为间接带隙半导体,禁带宽度为2.51eV;价带主要由O 2s和Ta 5d,以及Ta 5d,6s电子态构成,导带主要由Ta 5d和O 2p构成;静态介电常数ε1(0)=3.96;折射率n=2.0。并利用计算的能带结构和态密度分析了Ta2O5的介电常数、吸收系数、折射率、反射率、光电导率和能量损失函数的计算结果,为Ta2O5的设计和应用提供了理论依据。  相似文献   

3.
采用基于第一性原理的贋势平面波方法,对不同类型点缺陷单层MoS2电子结构、能带结构、态密度和光学性质进行计算。计算结果表明:单层MoS2属于直接带隙半导体,禁带宽度为1.749ev,V-Mo缺陷的存在使得MoS2转化为间接带隙Eg=0.671eV的p型半导体,V-S缺陷MoS2的带隙变窄为Eg=0.974eV,S-Mo缺陷的存在使得MoS2转化为间接带隙Eg=0.482eV; Mo-S缺陷形成Eg=0.969eV直接带隙半导体,费米能级上移靠近价带。 费米能级附近的电子态密度主要由Mo的4d态和s的3p态电子贡献。光学性质计算表明:空位缺陷对MoS2的光学性质影响最为显著,可以增大MoS2的静态介电常数、折射率n0和反射率,降低吸收系数和能量损失。  相似文献   

4.
苏锐  何捷  陈家胜  郭英杰 《物理学报》2011,60(10):107101-107101
采用完全势线性缀加平面波方法(FP-LAPW)结合密度泛函+U(DFT+U)模型计算了金红石相VO2的电子结构和光学性质. 电子态密度计算结果表明所采用的方法可以较好的描述体系的导带电子结构. 计算得到体系为导体,V-O键主要由O原子的2 p轨道与V原子的3 d轨道杂化形成,外加光场垂直和平行于c轴时体系的等离子振荡频率为3.44 eV和2.74 eV,光电导率在0-1 eV之间有一个与带内跃迁有关的德鲁德峰,而大于1 eV的光电导率主要由电子带间跃迁产生,得到并分析了带内跃迁过程和带间跃迁过程各自对反射谱和电子能量损失谱的贡献. 关键词: 光电性质 电子结构 缀加平面波方法 2')" href="#">VO2  相似文献   

5.
使用密度泛函第一性原理研究了高温超导体LaFeAsO各向异性的光学性质。在描述光学性质的计算原理和计算方法的基础上, 计算了LaFeAsO的态密度、光电导谱、反射谱以及电子能量损失谱。光电导谱中, x方向与z方向有着很大差别, 在沿x方向的第一个带间吸收峰出现在1.3 eV处, 沿z方向出现在1.5 eV处; 在反射谱与电子能量损失谱中, x方向与z方向的特征峰位置在能量较高处都是相互吻合的。分析认为, 主要是电子在Fe原子之间的各个态间的跃迁所引起。考虑到温度效应对其光学性质的影响, 在计算光学矩阵元时, 加入Lorentz展宽δ=0.10 eV。本文的研究结果, 可为实验制备以及材料性质的研究提供有价值的参考。  相似文献   

6.
采用基于密度泛函理论的第一性原理计算方法,对未掺杂及Ce掺杂6H-SiC的电子结构和光学性质进行理论计算.计算结果表明,未掺杂6H-SiC是间接带隙半导体,其禁带宽度为2.045 eV,掺杂Ce元素,带隙宽度下降为0.812 eV.未掺杂6H-SiC在价带的低能区,Si-3s、C-2s电子轨道对态密度的贡献较大,在价带的高能区,主要是由Si-3p、Si-3s、C-2p态组成.掺杂后Ce原子的4f轨道主要贡献在导带部分,掺杂后电导率提高.未掺杂时,只有一个介电峰,是价带电子跃迁到导带电子所致,掺杂后有两个介电峰,第一个介电峰是由于导带电子跃迁到Ce原子4f轨道上产生,第二个峰是价带电子向导带电子跃迁产生.未掺杂6H-SiC,在能量为10.31 eV处吸收系数达到最大值,掺杂后在能量为6.57 eV处,吸收系数达到最大值.  相似文献   

7.
采用基于密度泛函理论的第一性原理计算方法,对未掺杂及Ce掺杂6H-SiC的电子结构和光学性质进行理论计算.计算结果表明,未掺杂6H-SiC是间接带隙半导体,其禁带宽度为2.045 eV,掺杂Ce元素,带隙宽度下降为0.812 eV.未掺杂6H-SiC在价带的低能区,Si-3s、C-2s电子轨道对态密度的贡献较大,在价带的高能区,主要是由Si-3p、Si-3s、C-2p态组成.掺杂后Ce原子的4f轨道主要贡献在导带部分,掺杂后电导率提高.未掺杂时,只有一个介电峰,是价带电子跃迁到导带电子所致,掺杂后有两个介电峰,第一个介电峰是由于导带电子跃迁到Ce原子4f轨道上产生,第二个峰是价带电子向导带电子跃迁产生.未掺杂6H-SiC,在能量为10.31 eV处吸收系数达到最大值,掺杂后在能量为6.57 eV处,吸收系数达到最大值.  相似文献   

8.
高冉  谢泉 《光谱实验室》2013,30(1):56-62
利用基于密度泛函理论的赝势平面波方法对Sc掺Ca3Si4的电子结构和光学性质进行了系统的计算和分析比较.研究结果为块体Ca3Si4是间接带隙半导体,带隙为0.372eV,价带主要是由Si的3s和3p及Ca的3d态电子构成,导带主要是由Ca的3d态电子构成,静态介电常数ε1(0)=19,折射率n0=4.35;吸收系数在能量3.024eV处达到最大峰值1.56×105cm-1.而掺杂Sc变为n型半导体;费米能级附近的导带主要则由Ca的3d态电子和Sc的3d态电子构成,静态介电常数变为ε1(0)=54.58,折射率n0=7.416;吸收系数在能量5.253eV处达到最大峰值1.614×105cm-1.通过掺杂有效调制了Ca3Si4的电子结构和光学性质,计算结果为Ca3Si4光电材料的设计与应用提供了理论依据.  相似文献   

9.
蒋雷  王培吉  张昌文  冯现徉  逯瑶  张国莲 《物理学报》2011,60(9):93101-093101
基于密度泛函理论的第一性原理,采用全势线性缀加平面波方法(FPLAPW)和广义梯度近似(GGA)来处理相关能,计算了Cr掺杂SnO2超晶格的电子态密度、能带结构、介电函数、吸收系数、反射率和折射率.研究表明由于Cr的掺入,超晶格SnO2在费米能级附近形成了新的电子占据态,出现了不连续的杂质能带,这是由Cr-3d态和O-2p,Sn-5s态电子所形成.介电谱在0—5.5 eV之间时出现了三个新的介电峰,在高能区介电谱主峰位置发生蓝移,峰值强度减小.吸收谱、反射谱和折 关键词: 超晶格 第一性原理 态密度 电子结构  相似文献   

10.
运用局域密度泛函理论的离散变分方法(DV-Xa)模拟计算了掺Pb2+后CaWO4晶体的电子结构。计算结果表明,掺Pb2+后晶体的带隙明显变窄;晶体中可能存在Pb的6 s态到W的5 d态的电子跃迁过程,用过渡态的方法计算得到其光学跃迁能为3.86 eV(对应322 nm吸收带)。并解释了晶体内440 nm发光带起源于W的5 d态到Pb的6 s的金属离子间电子转移过程。  相似文献   

11.
采用原子簇嵌入模式的电荷自洽离散变分法(SCC-DV-Xα-ECM),对金红石型二氧化钒(VO2)的电子结构、介电常数、吸收系数、折射率、电导率等光电性质进行计算.得到O的2p能态与V的3d能态杂化形成一个宽带,费米能级在此带内上部.在费米能级下的能级上都占据有电子,此带中有大量电子都可参与导电,因此金红石型VO2呈现金属性质.介电常数虚部随入射光频率的变化,反映了在0.8 eV能量附近,电子激发以带内跃迁为主,在5~7 eV能量范围,电子激发以带间跃迁为主.折射率和消光系数与已报道的实验结果符合得比较好.并将所得结果与CASTEP软件计算结果对比及分析讨论.  相似文献   

12.
采用基于密度泛函理论第一性原理超软贋势平面波方法系统计算了Ca2Si及P掺杂Ca2Si的电子结构、光学性质,分析了P掺杂对Ca2Si的能带结构、电子态密度、光学性质的影响.计算结果表明:掺入P后Ca2Si的能带向低能方向偏移,禁带宽带为0.557 95eV,价带主要由Si的3p,P的3p以及Ca的4s、3d电子构成,导带主要由Ca的3d电子贡献.通过能带结构和态密度分析了P掺杂正交相Ca2Si的复介电函数、折射率、反射谱、吸收谱和能量损失函数,结果表明P掺杂增强了Ca2Si的光利用率,说明掺杂能够有效改变材料电子结构和光电性能,为Ca2Si材料光电性能的开发、应用提供理论依据.  相似文献   

13.
采用基于密度泛函理论的第一性原理计算,研究了Te掺杂对单层MoS2能带结构、电子态密度和光电性质的影响。结果表明,本征单层MoS2属于直接带隙半导体材料,其禁带宽度为1.64 eV。本征单层MoS2的价带顶主要由S-3p态电子和Mo-4d态电子构成,而其导带底则主要由Mo-4d态电子和S-3p态电子共同决定;Te掺杂单层MoS2为间接带隙半导体材料,其禁带宽度为1.47 eV。同时通过Te掺杂,使单层MoS2的静态介电常数增大,禁带宽度变窄,吸收光谱产生红移,研究结果为单层MoS2在光电器件方面的应用提供了理论基础。  相似文献   

14.
采用基于第一性原理的密度泛函理论(DFT)赝势平面波方法计算了锰掺杂二硅化铬(CrSi2)体系的能带结构、态密度和光学性件质.计算结果表明末掺杂CrSi2属于间接带隙半导体间接带隙宽度△ER=0.35 eV;Mn掺杂后费米能级进入导带,带隙变窄,且间接带隙宽度△Eg=0.24 eV,CrSi2转变为n型半导体.光学参数发生改变,静态介电常数由掺杂前的ε1(O)=32变为掺杂后的ε1(O)=58;进一步分析了掺杂对CrSi2的能带结构、态密度和光学性质的影响,为CrSi2材料掺杂改件的研究提供r理论依据.  相似文献   

15.
采用基于密度泛函理论的第一性原理计算法研究了新型稀磁半导体Li_(1±)_y(Zn_(1-)_xFe_x)P (x=0, 0.0625;y=0, 0.0625)的电子结构、磁性及光学性质.结果表明,Fe的掺入使体系产生自旋极化杂质带,Fe的3d态与Li2s态,Zn4s态以及P3p态的态密度峰在费米能级处出现重叠,产生sp-d轨道杂化,此时体系净磁矩最大,材料表现出金属性,导电性增强.当Li空位时,导电性减弱,但杂质带宽度最大,居里温度最高.而Li填隙时,体系形成能最低,材料变为半金属性,表现为100%自旋注入,表明掺杂体系的磁性和电性可以分别通过Fe的掺入和Li的含量进行调控.对比光学性质发现,Li空位时,在介电函数虚部和复折射率函数的低能区出现新峰,扩大了对低频电磁波的吸收范围.能量损失函数表明掺杂体系具有明显的蓝移效应,且Li填隙时有更强的等离子共振频率.  相似文献   

16.
基于密度泛函理论,采用第一性原理赝势平面波方法计算了Co、Cr单掺杂以及Co-Cr共掺杂金红石型TiO2的能带结构、态密度和光学性质.计算结果表明:纯金红石的禁带宽度为3.0eV,Co掺杂金红石型TiO2的带隙为1.21eV,导带顶和价带底都位于G点处,仍为直接带隙,在价带与导带之间出现了由Co 3d和Ti 3d轨道杂化形成的杂质能级;Cr掺杂金红石型TiO2的直接带隙为0.85eV,在价带与导带之间的杂质能级由Cr 3d和Ti 3d轨道杂化轨道构成,导带和价带都向低能级方向移动;Co-Cr共掺杂,由于电子的强烈杂化,使O-2p态和Ti-3d态向Co-3d和Cr-3d态移动,使价带顶能级向高能级移动而导带底能级向低能方向移动,极大地减小了禁带的宽度,也是共掺杂改性的离子选择依据.掺杂金红石型TiO2的介电峰、折射率和吸收系数峰都向低能方向移动;在E2.029eV的范围内,纯金红石的ε2、k和吸收系数为零,掺杂后的跃迁强度都大于未掺杂时的跃迁强度,Co-Cr共掺杂的跃迁强度大于Co掺杂及Cr掺杂,说明Co、Cr共掺杂更能增强电子在低能端的光学跃迁,具有更佳的可见光催化性能.  相似文献   

17.
强激光照射对2H-SiC晶体电子特性的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
邓发明 《物理学报》2015,64(22):227101-227101
使用基于密度泛函微扰理论的第一原理赝势法, 计算了纤锌矿结构2H-SiC晶体在强激光照射下的电子特性, 分析了其能带结构和电子态分布. 计算结果表明: 2H-SiC平衡晶格参数a 和c随电子温度Te的升高逐渐增大; 电子温度在0–2.25 eV范围内时, 2H-SiC仍然是间接带隙的半导体晶体, 当Te超过2.25 eV达到2.5 eV以上时, 2H-SiC变为直接带隙的半导体晶体; 随着电子温度升高, 导带底和价带顶向高能量或低能量方向发生了移动, 当电子温度Te大于3.5 eV以后, 价带顶穿越费米能级; 电子温度Te在0–2.0 eV变化时, 带隙随电子温度升高而增大; Te在2.0–3.5 eV范围变化时, 带隙随电子温度升高而快速地减少, 表明2H-SiC晶体的金属性随电子温度Te的继续升高而增强. 在Te =0, 5.0 eV 处, 计算了2H-SiC晶体总的电子态密度和分波态密度. 电子结构表明Te =0 eV 时, 2H-SiC 是一个带隙为2.3 eV的半导体; 在Te =5.0 eV时, 带隙已经消失而呈现出金属特性, 表明当电子温度升高时晶体的共价键变弱、金属键增强, 晶体经历了一个熔化过程, 过渡到金属状态.  相似文献   

18.
本文基于第一性原理平面波赝势(PWP)和广义梯度近似(GGA)方法,研究了Sc2O3的电子结构、态密度和光学性质.计算结果表明:Sc2O3是一种直接带隙半导体,其能带宽度为3.79 eV,价带顶部主要由O的2p和Sc的3p3d杂化而成,导带主要由Sc的3d和O的2p构成.同时,文中也分析了Sc2O3的介电函数、折射率、光电导率和吸收谱等光学性质.计算得到静态介电常数ε1(0)=1.57,折射率n0 =1.25,在紫外区有较大的吸收系数.  相似文献   

19.
采用基于密度泛函理论的第一性原理计算方法,对未掺杂及La掺杂6H-SiC的电子结构和光学性质进行理论计算.计算结果表明,未掺杂6H-SiC是间接带隙半导体,其禁带宽度为2.045 eV,掺杂La元素,形成P型间接半导体,带隙宽度下降为0.886 eV.未掺杂6H-SiC在价带的低能区,Si-3s、C-2s电子轨道对态密度的贡献较大,在价带的高能区,主要是由Si-3p、Si-3s、C-2p态组成.掺杂后La的5d轨道与6H-SiC的sp~3轨道杂化主要贡献在价带部分,而对导带的贡献相对较小,掺杂后电导率提高.未掺杂时,只有一个介电峰,是价带电子跃迁到导带电子所致,掺杂后有两个介电峰,其中第一个介电峰是由sp~3杂化轨道上的电子跃迁到La原子5d轨道上产生.未掺杂6H-SiC,在能量为10.31处吸收系数达到最大值,掺杂后在能量为7.35 eV处,吸收系数达到最大值.  相似文献   

20.
采用基于密度泛函理论中第一性原理的赝势平面波法,分别对本征Mn4Si7、Cr掺杂Mn4Si7以及Cr和Mo双掺Mn4Si7的电子结构及光学性质进行了计算和分析。计算结果表明本征Mn4Si7禁带宽度为Eg=0.813 eV,Cr掺杂Mn4Si7禁带宽度为Eg=0.730 eV,Cr和Mo双掺Mn4Si7禁带宽度为Eg=0.620 eV,均为间接带隙半导体、p型掺杂。此外,在低能区掺杂体系的介电函数、折射率、消光系数、吸收系数以及光电导率均强于本征Mn4Si7,表明Cr掺杂Mn4Si7以及Cr和Mo双掺Mn4Si7有运用于红外光电子器件的巨大潜力。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号