首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
基于密度泛函理论(DFT)的第一性原理计算方法,对本征Mn4Si7以及Ge,Al单掺杂和共掺杂Mn4Si7的晶体结构,能带结构,态密度以及光学性质进行了计算和分析.计算结果表明:本征态Mn4Si7的禁带宽度为0.810 eV,为直接带隙半导体材料,掺杂后晶体结构稍微变化,禁带宽度减小,且共掺杂时禁带宽度最小,电导率最好.Al以及Ge,Al共同掺杂时会产生杂质能级.掺杂后光子能量向低能级方向移动,光电导率,光吸收,反射系数都有所增大,说明掺杂改善了Mn4Si7的光学性质,从而可以提高光伏发电效率.  相似文献   

2.
基于密度泛函理论框架下,利用第一性原理计算方法,对本征Mn4Si7以及不同Al掺杂浓度下Mn4Si7的电子结构及光学性质进行系统计算分析. Mn4Si7晶胞中有16个Mn原子及28个Si原子,建立4种Mn16-xAlxSi28(x=0,2,4,8)的掺杂模型,计算结果表明:本征Mn4Si7的禁带宽度Eg =0.775 eV,属于间接带隙半导体,Al的掺入导致了Mn4Si7费米能级附近的电子结构发生改变,导带向低能方向发生偏移,价带向高能方向发生偏移,禁带宽度由0.775 eV降至零,呈现出金属性.计算还表明,在光子能量低能区域,Al的掺入使Mn4Si7的介电函数、折射率、吸收及反射系数等光学性质有所提升,改善了Mn4S...  相似文献   

3.
基于密度泛函理论(DFT)的第一性原理计算方法,对本征Mn4Si7以及Ge, Al单掺杂和共掺杂Mn4Si7的晶体结构,能带结构,态密度以及光学性质进行了计算和分析.计算结果表明:本征态Mn4Si7的禁带宽度为0.810 eV,为直接带隙半导体材料,掺杂后晶体结构稍微变化,禁带宽度减小,且共掺杂时禁带宽度最小,电导率最好.Al以及Ge, Al共同掺杂时会产生杂质能级.掺杂后光子能量向低能级方向移动,光电导率,光吸收,反射系数都有所增大,说明掺杂改善了Mn4Si7的光学性质,从而可以提高光伏发电效率.  相似文献   

4.
采用基于第一性原理的贋势平面波方法,对不同类型点缺陷单层MoS2电子结构、能带结构、态密度和光学性质进行计算。计算结果表明:单层MoS2属于直接带隙半导体,禁带宽度为1.749ev,V-Mo缺陷的存在使得MoS2转化为间接带隙Eg=0.671eV的p型半导体,V-S缺陷MoS2的带隙变窄为Eg=0.974eV,S-Mo缺陷的存在使得MoS2转化为间接带隙Eg=0.482eV; Mo-S缺陷形成Eg=0.969eV直接带隙半导体,费米能级上移靠近价带。 费米能级附近的电子态密度主要由Mo的4d态和s的3p态电子贡献。光学性质计算表明:空位缺陷对MoS2的光学性质影响最为显著,可以增大MoS2的静态介电常数、折射率n0和反射率,降低吸收系数和能量损失。  相似文献   

5.
本文通过密度泛函理论第一性原理平面波超软赝势计算方法计算了Mn掺杂6H-SiC的电子结构与光学性质。计算结果显示掺杂Mn后的6H-SiC为间接带隙p型半导体,且带隙较本征体有所降低,带隙由2.022 eV降为0.602 eV,电子从价带跃迁所需能量减少。掺杂后的Mn的3d能级在能带结构中以杂质能级出现,提高了载流子浓度,导电性增强。光学性质研究中,掺杂Mn后的介电函数虚部在低能处增加,电子激发态数量增多,跃迁概率增大。掺杂后的光吸收谱能量初值也较未掺杂的3.1 eV扩展到0 eV,反射谱发生红移。由于禁带宽度的降低使得光电导率起始范围得到扩展。  相似文献   

6.
采用基于密度泛函理论的第一性原理计算方法,对未掺杂及B掺杂Mn_4Si_7的电子结构和光学性质进行理论计算.研究结果表明,未掺杂Mn_4Si_7是间接带隙半导体,其禁带宽度为0.786 eV,B掺杂后其禁带宽度下降为0.723 eV. B掺杂Mn_4Si_7是p型半导体材料.未掺杂Mn_4Si_7在近红外区的吸收系数达到10~5 cm~(-1),B掺杂引起Mn_4Si_7的折射率、吸收系数、反射系数及光电导率增加.  相似文献   

7.
基于第一性原理密度泛函理论(DFT)的广义梯度近似(GGA)的平面波赝势法(PBE),计算了4H-SiC的本征体系、过渡金属元素Mo单掺杂4H-SiC体系的电子结构、磁性和光学特性。结果表明:Mo掺杂将导致4H-SiC由本征非磁性变为p型磁性半导体材料,其带隙值由2.88 eV 变为0.55 eV。当Mo掺杂浓度为1.359×1021 cm-3时,磁矩为0.98 ,这表明掺Mo后的4H-SiC材料可以作为自旋电子元器件的备选材料。此外,Mo掺杂4H-SiC体系在(100)和(001)方向的静态介电常数分别为3.780和3.969。介质函数虚部不为0的起始点发生红移,表明掺杂使电子更容易跃迁。  相似文献   

8.
采用基于密度泛函理论的第一性原理计算,研究了Te掺杂对单层MoS2能带结构、电子态密度和光电性质的影响。结果表明,本征单层MoS2属于直接带隙半导体材料,其禁带宽度为1.64 eV。本征单层MoS2的价带顶主要由S-3p态电子和Mo-4d态电子构成,而其导带底则主要由Mo-4d态电子和S-3p态电子共同决定;Te掺杂单层MoS2为间接带隙半导体材料,其禁带宽度为1.47 eV。同时通过Te掺杂,使单层MoS2的静态介电常数增大,禁带宽度变窄,吸收光谱产生红移,研究结果为单层MoS2在光电器件方面的应用提供了理论基础。  相似文献   

9.
贾婉丽  周淼  王馨梅  纪卫莉 《物理学报》2018,67(10):107102-107102
基于密度泛函理论体系,计算了本征GaN材料和12.5%的Fe掺杂GaN体系的光电特性,分析了晶体结构、能带结构和电子态分布、介电函数、吸收系数、折射率、反射率、能量损失谱和消光系数,从理论上讨论了掺杂对体系光电特性的影响.计算所得理想GaN的禁带宽度为3.41 eV,Fe的重掺杂体系明显变窄,为3.06 eV,但仍为直接带隙半导体.本征GaN材料与Fe掺杂GaN体系的静态介电常数为5.74和6.20,折射率为2.39和2.48,能量损失最大值在20.02 eV和18.96 eV,最大吸收系数能量均在13.80 eV左右.计算结果为Fe掺杂GaN高压光电导开关材料及器件的进一步研究提供了有力的理论依据和实验支持.  相似文献   

10.
利用射频磁控溅射法制备出TiO2 薄膜及不同掺 Ce 比的 TiO2 薄膜.用紫外-可见分光光度计对薄膜的透过率做了测定,结果显示在一定掺杂范围内随着掺Ce 量的增加,薄膜的光学吸收边出现红移.计算发现通过CeO2 的掺杂,氧化钛薄膜禁带宽度 Eg 由 3.40 eV 减小至2.73 eV,从而使吸收边由366 nm 红移至455 nm 处,增强了对可见光的吸收,这与CeO2 在TiO2 导带与价带间引入杂质能级有关.  相似文献   

11.
过渡金属硫化物黄铁矿是一种优异的光伏材料,掺杂改性是提高黄铁矿光伏性能的一种重要手段。为了探究不同Co掺杂量对黄铁矿的晶体结构和吸光性能的影响,采用热硫化法在360℃时制备出了纳-微米黄铁矿样品。利用X射线衍射(XRD)和多功能场发射扫描式电子显微镜(FESEM)分析了样品的晶体结构、形貌特征和晶粒尺寸;利用能谱仪(EDS)分析了样品的化学成分,并通过紫外-可见-近红外分光光度计(UV-Vis-NIR)表征了样品的光吸收性能和禁带宽度的变化。结果表明,掺Co并未改变黄铁矿的立方晶型结构,但与未掺杂黄铁矿相比,样品结晶度变差,晶粒发生团聚,尺寸在1~1.45 μm范围内;掺Co量的增加会导致晶粒尺度略微减小,但影响不大。EDS检测表明,实际样品的掺杂并不均匀,当掺Co量小于7 at%时,测试值小于名义掺杂量;而当掺Co量大于7 at%时,Co易发生富集。S/(Fe+Co)的比值在1.92~2.05范围内,表明样品内部的点缺陷数量的变化。反射光谱表明制备样品的禁带宽度Eg在0.57~0.72 eV之间。禁带宽度Eg随着掺杂量的增加,呈现出先减小(Co 3 at%)后增加(Co 5~9 at%)的趋势。掺Co量从0%增加3 at%时,样品内部产生的点缺陷数目增多,形成的附加能级会导致禁带宽度Eg窄化;随着掺Co量进一步增加,S/(Fe+Co)比值更接近于2,晶体结构更趋完善,Fe空位或S间隙点缺陷比率降低,禁带宽度Eg趋近于本征特征,会导致禁带宽度Eg宽化;另外,随着Co含量的提高,物相中微量的CoS2相增多,亦会导致较高掺Co量样品的禁带宽度有所宽化。掺Co量在9 at%的样品的禁带宽度为0.72 eV,大于同温度条件下未掺杂样品的禁带宽度0.65 eV,禁带宽度的宽化在理论上有利于提高样品的光电转换效率。  相似文献   

12.
采用溶胶-凝胶旋涂法制备本征TiO_2、Ag单掺Ag-TiO_2及Ag/Zn共掺Ag/Zn-TiO_2的薄膜样品.测试结果表明:所有TiO_2薄膜样品的主要晶面是(101)且没有其他杂质晶面.Ag的掺杂使得样品的晶粒尺寸减小,样品的吸收边出现红移,带隙能减小,最小值为3.476eV.与本征TiO_2和Ag-TiO_2相比,随着Zn掺杂原子数分数的增加,样品的(101)衍射峰呈现出先减弱后增强的趋势;样品的半高全宽增加,晶粒尺寸和晶面间距都减小,晶粒得到细化;薄膜的表面形貌得到修饰,变得更为平整、致密且均匀,孔隙和团簇相对较少;吸收边先蓝移后红移,吸光度增加,禁带宽度由3.515eV减小到3.419eV.样品中当Zn的掺杂原子数分数为2.00%时,(101)衍射峰最强,峰型最为尖锐,晶粒最小,表面形貌最佳,禁带宽度出现最小值为3.419eV.  相似文献   

13.
采用基于第一性原理的密度泛函理论(DFT)赝势平面波方法计算了锰掺杂二硅化铬(CrSi2)体系的能带结构、态密度和光学性件质.计算结果表明末掺杂CrSi2属于间接带隙半导体间接带隙宽度△ER=0.35 eV;Mn掺杂后费米能级进入导带,带隙变窄,且间接带隙宽度△Eg=0.24 eV,CrSi2转变为n型半导体.光学参数发生改变,静态介电常数由掺杂前的ε1(O)=32变为掺杂后的ε1(O)=58;进一步分析了掺杂对CrSi2的能带结构、态密度和光学性质的影响,为CrSi2材料掺杂改件的研究提供r理论依据.  相似文献   

14.
基于密度泛函理论,采用广义梯度近似(GGA+U)平面波超软赝势方法,计算了本征GaN和稀土元素Lu、Sc掺杂GaN体系的电子结构和光学性质.结果表明:计算得到本征GaN的禁带宽度为3.37 eV,与实验值(3.39 eV)接近. Lu掺杂后GaN体系带隙变窄,而Sc掺杂后诱导了深能级杂质,带隙变宽,但仍为直接带隙半导体.掺杂后体系均发生畸变,晶格常数和体积增大,且在费米能级附近产生杂质带. Lu、Sc掺杂GaN体系的静态介电常数较本征GaN(4.50)均有所增大.Lu、Sc掺杂后体系介电常数虚部整体左移,光吸收边往低能方向移动,发生了红移现象.计算结果对稀土元素Lu、Sc掺杂GaN高压光电材料的开发和研究提供了理论依据.  相似文献   

15.
本文利用基于密度泛函理论的第一性原理研究了不同浓度的Mo掺杂BiVO4的V位的电子结构、光学性质和光催化性能.缺陷形成能的计算结果说明BiMoxV1-xO4(x=0.0625, 0.125, 0.25)三种掺杂体系都是可以稳定存在的.电子结构计算结果表明:BiMoxV1-xO4(x=0, 0.0625, 0.125, 0.25)四种体系的带隙分别为2.123 eV,2.142 eV,2.160 eV和2.213 eV.掺杂BiVO4体系的带隙值均大于本征BiVO4,且带隙随着Mo浓度的增加而增大. BiMoxV1-xO4(x=0.0625, 0.125, 0.25)三种掺杂体系的能带结构全部向低能量区域移动,导致掺杂体系导带底越过费米能级,Mo掺杂BiVO4后具...  相似文献   

16.
采用基于密度泛函理论的第一性原理方法,计算了不同Mn掺杂浓度LiFel-xMn。P04(X=0,0.25,0.50,0.75)的电子结构.同时采用流变相辅助高温固相碳热还原法制备了LiFel-xMn。P04@=0,0.25,O.50,0.75)材料.理论计算表明:LiFeP04具有Eg=O.725eV的带隙宽度,为半导体材料.通过Fe位掺杂25%的Mn离子可最大程度地减小材料带隙宽度、降低Fe-0键及Li-O键键能,进而提高材料的电子电导率及锂离子扩散速率.实验结果亦表明,当Mn掺杂量0=0.25时,材料具有最优的电化学性能,其具有约为158mAh.g。的放电比容量以及551Wh.kg0的能量密度.理论计算与实验结果非常符合.  相似文献   

17.
基于第一性原理的平面波超软赝势法对(6, 0)单壁氮化硼纳米管、Cr掺杂、Ag掺杂、以及Cr-O共掺纳米管进行电子结构和光学性质的计算。结果表明:Cr掺杂和Cr-O共掺体系相比于本征体系的带隙值均减小,掺杂体系的导带底穿过费米能级从而实现了氮化硼纳米管的n型掺杂。Ag掺杂实现了纳米管的p型掺杂。本征氮化硼纳米管、Ag掺杂、Cr掺杂、以及Cr-O共掺纳米管的静态介电常数分别为1.17、1.61、1.32和1.48,相对于本征体系静介电性能有所提高。  相似文献   

18.
采用基于第一性原理的贋势平面波方法,对不同类型点缺陷单层Mo S2电子结构、能带结构、态密度和光学性质进行计算.计算结果表明:单层Mo S2属于直接带隙半导体,禁带宽度为1.749e V,Mo空位缺陷V-Mo的存在使得单层Mo S2转化为间接带隙Eg=0.660e V的p型半导体,S空位缺陷V-S使得Mo S2带隙变窄为Eg=0.985e V半导体,S原子替换Mo原子S-Mo反位缺陷的存在使得Mo S2转化为带隙Eg=0.374e V半导体;Mo原子替换S原子Mo-S反位缺陷形成Eg=0.118e V直接带隙半导体.费米能级附近的电子态密度主要由Mo的4d态和s的3p态电子贡献.光学性质计算表明:空位缺陷对Mo S2的光学性质影响最为显著,可以增大Mo S2的静态介电常数、折射率n0和反射率,降低吸收系数和能量损失.  相似文献   

19.
基于第一性原理的平面波超软赝势法对(6, 0)单壁氮化硼纳米管、Cr掺杂、Ag掺杂、以及Cr-O共掺纳米管进行电子结构和光学性质的计算.结果表明:Cr掺杂和Cr-O共掺体系相比于本征体系的带隙值均减小,掺杂体系的导带底穿过费米能级从而实现了氮化硼纳米管的n型掺杂. Ag掺杂实现了纳米管的p型掺杂.本征氮化硼纳米管、Ag掺杂、Cr掺杂、以及Cr-O共掺纳米管的静态介电常数分别为1.17、1.61、1.32和1.48,相对于本征体系静介电性能有所提高.  相似文献   

20.
采用基于密度泛函的第一性原理研究了稀土元素La、Ce共掺杂锐钛矿相TiO2的缺陷形成能,缺陷电荷转变能级以及电子结构.研究发现,富氧状态下La、Ce掺杂以及La-Ce共掺的缺陷形成能均为负值,而贫氧状态下La、Ce掺杂形成能为正,表明La、Ce的掺杂TiO2只能在氧气氛制备条件下进行;替代Ti掺杂缺陷电荷转变能级计算结果表明:0/1-的缺陷电荷转变能级分别位于VBM上面0.522 eV及2.440 eV处;与纯锐钛矿相TiO2相比,La、Ce单掺杂以及La-Ce共掺杂均能减小TiO2的禁带宽度,但共掺杂体系的禁带宽度更窄,因此共掺杂体系将更有利于提高TiO2对可见光的响应能力和光催化性能.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号