首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
We use a diamond anvil cell for the first time to investigate the Raman spectra of an aqueous micellar solution of hexadecyltrimethylammonium bromide (CTAB) at pressures up to 3.85 GPa. The pressure-induced phase transition between the micellar and coagel phases is found to occur at 0.64 GPa and 60℃. This phase transition has a pressure hysteresis, and thus exhibits the first-order phase transition properties. Further experimental results show that although the structure of the coagel phase is similar to that of the CTAB crystal, the interchain distance is slightly larger in the coagel phase than that in the CTAB crystal.  相似文献   

2.
High-pressure Raman studies at room temperature are performed on CC14 up to 13 GPa. The Raman bands of the internal modes (v2, v4 and vl) show entirely positive pressure dependence. The slopes dω/dP of the internal modes exhibit two sudden changes at O. 73 GPa and 7.13 GPa, respectively. A new lower frequency mode (225 em-1) appears at 3.03 GPa, and the splitting of v2, v3 and v4 occurs at about 7.13 GPa. Moreover, Raman spectra of Fermi resonance show that the relative position of the v1 + v4 combination and the v3 fundamental firstly interchanges corresponding to that at ambient pressure, then the v1 + v4 combination disappears in the gradual process of compression. It is indicated that the pressure-induced phase transition from CC14 Ⅱ to CC14 Ⅲ occurs at 0.73 GPa, and CC14 Ⅲ undergoes a transition to CC14 IV below 3.03 GPa. Further CC14 Ⅳ transforms in a new high-pressure phase at about 7.13 GPa, and the symmetry of the new high-pressure phase is lower than that of CC14 Ⅳ. All the transitions are reversible during decompression.  相似文献   

3.
The BaW04-17 phase is synthesized at 5.0 GPa and 610~C with a cubic-anvil apparatus and identified by XRD. Raman scattering measurement is carried out to investigate the phase behaviour of a pure BaW04-Ⅱ phase (space group P21/n, Z = 8) under hydrostatic pressures up to 14.8 GPa at ambient temperature. In each spectrum recorded for this phase, 27 Raman modes are observed, and all bands shift toward higher wavenumber with a pressure dependence ranging from 3.8 to 0.2 cm- 1/GPa. No pressure-driven phase transition occurs in the entire pressure range in this study. Our results indicate that the previously reported high pressure phase of Ba WO4 at pressure above about 10 GPa and room temperature (Errandonea et al. Phys. Rev. B 73(2006)224103) is not the BaW04-Ⅱ phase.  相似文献   

4.
The pressure-induced phase transitions of PbCO3 are studied using synchrotron radiation in a diamond anvil cell at room temperature. The XRD measurement indicates that PbCO3 with an initial phase of aragonite-type structure undergoes two phase transitions at ~7.8GPa and ~15.7GPa respectively. The higher-pressure phase appearing at ~ 15.7GPa is stable up to 51.8GPa. The two phase transitions are further confirmed by Raman scattering up to 23.3GPa. During the decompression process, the high-pressure phases of PbCO3 are gradually recovered to the starting aragonite-type structure, but exhibit some hysteresis. The bulk modulus B0 of the aragonite-type structure is obtained to be 63±(3) GPa by fitting the volume-pressure data to the Birch-Murnaghan equation of states with B0 fixed to 4.  相似文献   

5.
吕超甲  刘雷  高阳  刘红  易丽  庄春强  李营  杜建国 《中国物理 B》2017,26(6):67401-067401
Phase H(MgSiO_4H_2), one of the dense hydrous magnesium silicates(DHMSs), is supposed to be vital to transporting water into the lower mantle. Here the crystal structure, elasticity and Raman vibrational properties of the two possible structures of phase H with Pm and P2/m symmetry under high pressures are evaluated by first-principles simulations. The cell parameters, elastic and Raman vibrational properties of the Pm symmetry become the same as the P2/m symmetry at~ 30 GPa. The symmetrization of hydrogen bonds of the Pm symmetry at ~ 30 GPa results in this structural transformation from Pm to P2/m. Seismic wave velocities of phase H are calculated in a range from 0 GPa to 100 GPa and the results testify the existence and stability of phase H in the lower mantle. The azimuthal anisotropies for phase H are A_(P0)= 14.7%,A_(S0)= 21.2%(P2/m symmetry) and A_(P0)= 16.4%, A_(S0)= 27.1%(Pm symmetry) at 0 GPa, and increase to A_(P30)= 17.9%,A_(S30)= 40.0%(P2/m symmetry) and A_(P30)= 19.2%, A_(S30)= 37.8%(Pm symmetry) at 30 GPa. The maximum V P direction for phase H is [101] and the minimum direction is [110]. The anisotropic results of seismic wave velocities imply that phase H might be a source of seismic anisotropy in the lower mantle. Furthermore, Raman vibrational modes are analyzed to figure out the effect of symmetrization of hydrogen bonds on Raman vibrational pattern and the dependence of Raman spectrum on pressure. Our results may lead to an in-depth understanding of the stability of phase H in the mantle.  相似文献   

6.
Raman spectroscopic features of 1-dodecene are studied in a moissanite anvil cell up to 3.0 GPa at 21℃. Our data indicate that 1-dodecene is chemically stable under the experimental condition because no new Raman peaks can be observed. However, two significant discontinuities in the plots of Raman shift versus pressure indicate two phase transitions of 1-dodecene. One is liquid~olid transition at pressure of about 500 MPa, the other is solid-solid phase transition at pressure from 1300 to 1550 MPa. The latter is considered to be related to the orientational change of the plane structure of ethylene. A rudimentary phase diagrams for 1-dodecene, n-pentane, n-hexane are proposed based on the results and previous data.  相似文献   

7.
We present the superconducting(SC) property and high-robustness of structural stability of kagome CsV_3Sb_5 under in situ high pressures.For the initial SC-I phase,its T_c is quickly enhanced from 3.5 K to 7.6 K and then totally suppressed at P~10 GPa.With further increasing pressure,an SC-Ⅱ phase emerges at P~15 GPa and persists up to 100 GPa.The T_c rapidly increases to the maximal value of 5.2 K at P=53.6 GPa and slowly decreases to 4.7 K at P=100 GPa.A two-dome-like variation of T_c in CsV_3Sb_5 is concluded here.The Raman measurements demonstrate that weakening of E_(2 g) mode and strengthening of E_(1 g) mode occur without phase transition in the SC-II phase,which is supported by the results of phonon spectra calculations.Electronic structure calculations reveal that exertion of pressure may bridge the gap of topological surface nontrivial states near E_F,i.e.,disappearance of Z2 invariant.Meanwhile,the Fermi surface enlarges significantly,consistent with the increased carrier density.The findings here suggest that the change of electronic structure and strengthened electron-phonon coupling should be responsible for the pressure-induced reentrant SC.  相似文献   

8.
Structural behaviour of cyclo-octane under high pressure is studied by using a synchrotron x-ray source in a diamond anvil cell (DAC) up to 40.2 GPa at room temperature. The cyclo-octane firstly solidifies to the triclinic phase at 0.87 GPa. With the increasing pressure, the phase of cyclo-octane changes to the tetragonal phase at about 6.0 GPa and then transforms to amorphous phase above 18.2 GPa, which is kept till to 40.2 GPa. All the phase transitions of cyclo-octane are irreversible.  相似文献   

9.
Pressure evolution of local structure and vibrational dynamics of the perovskite-type relaxor ferroelectric single crystal of 0.935(Na0.5Bi0.5)TiO3-0.065BaTiO3(NBT-6.5BT)is systematically investigated via in situ Raman spectroscopy.The pressure dependence of phonon modes up to 30GPa reveals two characteristic pressures:one is at around 4.6GPa which corresponds to the rhombohedral-to-tetragonal phase transition,showing that the pressure strongly suppresses the coupling between the off-centered A-and B-site cations;the other structural transition involving the oxygen octahedral tilt and vibration occurs at pressure~13–15GPa with certain degree of order-disorder transition,evidenced by the abnormal changes of intensity and FWHM in Raman spectrum.  相似文献   

10.
梁桁楠  马春丽  杜菲  崔啟良  邹广田 《中国物理 B》2013,22(1):16103-016103
The effect of external quasi-hydrostatic pressure on the inverse spinel structure of LiCuVO 4 was studied in this paper. High-pressure synchrotron X-ray diffraction and Raman spectroscopy measurements were carried out at room temperature up to 35.7 and 40.3 GPa, respectively. At a pressure of about 20 GPa, both Raman spectra and X-ray diffraction results indicate that LiCuVO4 was transformed into a monoclinic phase, which remained stable up to at least 35.7 GPa. Upon release of pressure, the high-pressure phase returned to the initial phase. The pressure dependence of the volume of low pressure orthorhombic phase and high-pressure monoclinic phase were described by a second-order Birch-Murnaghan equation of state, which yielded bulk modulus values of B 0 = 197(5) and 232(8) GPa, respectively. The results support the empirical suggestion that the oxide spinels have similar bulk modulus around 200 GPa.  相似文献   

11.
Pressure-induced phase transition of cubic Eu2 03 is studied by angle-dispersive x-ray diffraction (ADXD) up to 42.3 GPa at room temperature. A structural transformation from a cubic phase to a hexagonal phase is observed, which starts at 5.0 GPa and finishes at about 13.1 GPa. The phase transition leads to a volume collapse of 9.0% at 8.6 GPa. The hexagonal phase of Eu2 03 maintains stable up to the highest experiment pressure. After re/ease of pressure, the high-pressure phase transforms to a monoclinic phase. The pressure-volume data are fitted with the Birch-Murnaghan equation of state. The bulk moduli obtained upon compression from the fitting are 145(2) GPa and 151(6) OPa for the cubic and hexagonal phases, respectively, when their first pressure derivatives are fixed at 4.  相似文献   

12.
We investigate the stability and dissociation of methane, which is the most abundant organic molecule in the universe, using diamond anvil cell (DAC) with in situ Raman spectroscopy up to 903K and 21 GPa. At the temperatures of 793 and 723 K and the corresponding pressures of 16.15 and 20.30 GPa, methane dissociates to form carbon 'soot' and heavier hydrocarbons involving C=C and C≡C bonds. However, if the pressure is not very high, methane remains stability up to the highest temperature of 903 K of the work. The four symmetric C-H bonds of methane split at high temperatures and at high pressures, and there is at least one phase transition of crystalline symmetry from face centred cubic (fcc) to hexagonal close packed (hcp) before dissociation.  相似文献   

13.
The compressional behavlour of natural pyrope garnet is investigated by using angle-dlspersive synchrotron radiation x-ray diffraction and Raman spectroscopy in a diamond anvil cell at room temperature. The pressureinduced phase transition does not occur under given pressure. The equation of state of pyrope garnet is determined under pressure up to 25.3 GPa. The bulk modulus KTO is 199 GPa, with its first pressure derivative K′TO fixed to 4. The Raman spectra of pyrope garnet are studied. A new Raman peak nearly at 743 cm^-1 is observed in a bending vibration of the SiO4 tetrahedra frequency range at pressure of about 28 GPa. We suggest that the new Raman peak results from the lattice distortion of the SiO4 tetrahedra. All the Raman frequencies continuously increase with the increasing pressure. The average pressure derivative of the high frequency modes (650-1000 cm^-1) is larger than that of the low frequency (smaller than 650 cm^-1). Based on these data, the mode Grǖneisen parameters for pyrope are obtained.  相似文献   

14.
High-pressure Raman studies at room temperature are performed on CCl4 up to 13GPa. The Raman bands of the internal modes (v2, v4 and v1) show entirely positive pressure dependence. The slopes dω/dP of the internal modes exhibit two sudden changes at 0.73GPa and 7.13GPa, respectively. A new lower frequency mode (225cm-1) appears at 3.03GPa, and the splitting of v2, ν3 and v4 occurs at about 7.13GPa. Moreover, Raman spectra of Fermiresonance show that the relative position of the v1 + v4 combination and the ν3 fundamental firstly interchanges corresponding to that at ambient pressure, then the v1 +v4 combination disappears in the gradual process of compression. It is indicated that the pressure-induced phase transition from CCl4 II to CCl4 III occurs at 0.73GPa, and CCl4 III undergoes a transition to CCl4 IV below 3.03GPa. Further CCl4 IV transforms in a new high-pressure phase at about 7.13GPa, and the symmetry of the new high-pressure phase is lower than that of CCl4 IV. All the transitions are reversible during decompression.  相似文献   

15.
High pressure behavior of sodium titanate nanotubes (Na2Ti2O5) is investigated by Raman spectroscopy in a diamond anvil cell (DAC) at room temperature. The two pressure-induced irreversible phase transitions are observed under the given pressure. One occurs at about 4.2 GPa accompanied with a new Raman peak emerging at 834 cm-1 which results from the lattice distortion of the Ti-O network in titanate nanotubes. It can be can be assigned to Ti-O lattice vibrations within lepidocrocite-type (H0.7Ti1.825V0.175O4・H2O)TiO6 octahedral host layers with V being vacancy. The structure of the nanotubes transforms to orthorhombic lepidocrocite structure. Another amorphous phase transition occurs at 16.7 GPa. This phase transition is induced by the collapse of titanate nanotubes. All the Raman bands shift toward higher wavenumbers with a pressure dependence ranging from 1.58-5.6 cm-1/GPa.  相似文献   

16.
Electrical properties of stoichiometric iron sulfide (FeS) are investigated under high pressure with a designed diamond anvil cell. The process of phase transition is reflected by changing the electrical conductivity under high pressure, and the conductivity of FeS with the NiAs structure is found to be much smaller than other phases. Two new phase transitions without structural change are observed at 34.7 GPa and 61.3 GPa. The temperature dependence of the conductivity is found to be similar to that of a semiconductor when the pressure is higher than 35 GPa  相似文献   

17.
High pressure structural phase transition of monoclinic paraotwayite type α-Ni(OH)_2 nanowires with a diameter of15 nm–20 nm and a length of several micrometers were studied by synchrotron x-ray diffraction(XRD) and Raman spectra.It is found that the α-Ni(OH)_2 nanowires experience an isostructural phase transition associated with the amorphization of the H-sublattice of hydroxide in the interlayer spaces of the two-dimensional crystal structure at 6.3 GPa–9.3 GPa. We suggest that the isostructural phase transition can be attributed to the amorphization of the H-sublattice. The bulk moduli for the low pressure phase and the high pressure phase are 41.2(4.2) GPa and 94.4(5.6) GPa, respectively. Both the pressure-induced isostructural phase transition and the amorphization of the H-sublattice in the α-Ni(OH)_2 nanowires are reversible upon decompression. Our results show that the foreign anions intercalated between the α-Ni(OH)_2 layers play important roles in their structural phase transition.  相似文献   

18.
The high-pressure polymorphs and structural transformation of Sn were experimentally investigated using angledispersive synchrotron x-ray diffraction up to 108.9 GPa. The results show that at least at 12.8 GPa β-Sn→bct structure transformation was completed and no two-phase coexistence was found. By using a long-wavelength x-ray, we resolved the diffraction peaks splitting and discovered the formation of a new distorted orthorhombic structure bco from the bct structure at 31.8 GPa. The variation of the lattice parameters and their ratios with pressure further validate the observation of the bco polymorph. The bcc structure appears at 40.9 GPa and coexists with the bco phase throughout a wide pressure range of40.9 GPa–73.1 GPa. Above 73.1 GPa, only the bcc polymorph is observed. The systematically experimental investigation confirms the phase transition sequence of Sn as β-Sn→bct→bco→ bco + bcc→bcc upon compression to 108.9 GPa at room temperature.  相似文献   

19.
In-situ high pressure Raman spectra and electrical conductivity measurements of scheelite-structure compound PbMoO4 are presented. The Raman spectrum of PbMoO4 is determined up to 26.5 GPa on a powdered sample in a diamond anvil cell (DAC) under nonhydrostatic conditions. The PbMoO4 gradully experiences the trans- formation from the crystal to amorphous between 9.2 and 12.5 GPa. The crystal to amorphous transition may be due to the mechanical deformation and the crystalographic transformation. Furthermore, the electrical conductivity of PbMoO4 is in situ measured accurately using a microcircuit fabricated on a DAC based on the van der Pauw method. The results show that the electrical conductivity of PbMoO4 increases with increases of pressure and temperature. At 26.5 GPa, the electrical conductivity value of PbMoO4 at 295K is 1.93 - 10-4 S/cm, while it raises by one order of magnitude at 430K and reached 3.33 - 10-3 S/cm. However, at 430K, compared with the electrical conductivity value of PbMoO4 at 26.5 GPa, it drops by about two order magnitude at 7.4 GPa and achieves 2.81 × 10^-5 S/cm. This indicates that the effect of pressure on the electrical conductivity of PbMoO4 is more obvious than that of temperature.  相似文献   

20.
An investigation of structural stabilities, electronic and optical properties of SrF2 under high pressure is conducted using a first-principles calculation based on density functional theory (DFT) with the plane wave basis set as implemented in the CASTEP code. Our results predict that the second high-pressure phase of SrF2 is of a Ni2In- type structure, and demonstrate that the sequence of the pressure-induced phase transition of SrF2 is the fluorite structure (Fm3m) to the PbC12-type structure (Pnma), and to the Ni2In-type phase (P63/mmc). The first and second phase transition pressures are 5. 77 and 45.58 GPa, respectively. The energy gap increases initially with pressure in the Fm3m, and begins to decrease in the Pnma phases at 30 GPa. The band gap overlap metallization does not occur up to 210 GPa. The pressure effect on the optical properties is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号