首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 149 毫秒
1.
H+CH3NO2H2+CH2NO2反应途径和变分速率常数计算研究   总被引:1,自引:0,他引:1  
采用MP2(FULL)/6-311G**从头算方法, 优化了H+CH3NO2H2+ CH2NO2反应的过渡态结构, 得出该反应的正逆反应的活化位垒分别是82.73和57.14 kJ*mol-1. 沿IRC分析指出该反应是一个H-H键生成和C-H键断裂的协同反应, 而且在反应途径上存在一个引导反应进行的振动模式, 这一反应模式引导反应进行的区间在-0.7~0.2( amu)1/2*a0之间; 在1 000~1 400 K温度范围内, 运用变分过渡态理论(CVT), 计算了该反应的速率常数, 计算结果与实验相一致.  相似文献   

2.
H+CH3NO2→H2+CH2NO2反应途径和变分速率常数计算研究   总被引:1,自引:0,他引:1  
采用MP2(FULL)/6-311G**从头算方法,优化了H+CH3NO2——H2+CH2NO2反应的过渡态结构,得出该反应的正逆反应的活化位垒分别是82.73和57.14 kJ·mol-1 .沿IRC分析指出该反应是一个H—H键生成和C—H键断裂的协同反应,而且在反应途径上存在一个引导反应进行的振动模式,这一反应模式引导反应进行的区间在- 0.7~0.2(amu)1/2·a0之间;在 1000~1400 K温度范围内,运用变分过渡态理论(CVT),计算了该反应的速率常数,计算结果与实验相一致.  相似文献   

3.
应用密度泛函理论研究了反应通道(a)C2H3+NO→CH3+NCO和(b)C2H3+NO→OH+C2H2N的反应机理.在B3LYP/6-31G(d)水平上优化了反应物、中间体、过滤态、产物的几何构型,通过频率分析确定了11个中间体和10个过渡态.所有的反应物、中间体、过渡态、产物都在CCSD/6-311++G(d,p)水平上进行了单点能较正.并讨论了反应的异构化过程.计算结果表明10是能量最低的中间体,比反应物的能量低308 479kJ/mol;过渡态1/3,2/5,3/4,4/8比反应物的能量高,其中3/4是能量最高的过渡态,比反应物的能量高91 894kJ/mol.通道(a)和(b)的理论放热值分别为111 059和96 619kJ/mol.  相似文献   

4.
HNCO+HCO→NCO+CH2O氢转移反应的从头算及动力学研究   总被引:2,自引:0,他引:2  
在UMP2(Full)/6-311G(d,p)计算水平上,优化了标题反应的反应物、过渡态、产物的几何结构,沿最小能量途径讨论了异氰酸(HNCO)和甲酰自由基(HCO)发生氢转移反应位能面上驻点的结构以及相互作用分子结构变化.指出该反应是一个N-H键断裂和C-H键生成的协同反应.进一步采用UQCISD(T,Full)方法对反应途径上的驻点进行了单点能量校正,得出该反应的计算位垒是91.47 kJ/mol,与实验值108.92 kJ/mol接近在500~2500K实验温度范围内,运用变分过渡态理论(CVT)计算得到的速率常数与实验观测值进行了比较  相似文献   

5.
NH2 + HNCO反应机理的从头计算   总被引:4,自引:1,他引:4       下载免费PDF全文
在6-311G(d,p)基组水平上, 采用全电子的UMP2和UQCISD(T)方法对自由基NH2和HNCO反应机理进行了研究, 结果表明, 反应存在如下两条反应通道: NH2 + HNCO→NH3 + NCO (1)和NH2 + HNCO→N2H3 + CO (2). 反应(1)是吸氢反应, QCISD(T,full)// MP2(full)/6-311G(d,p) 计算位垒是29.04 kJ/mol. 与实验估计值29.09 kJ/mol一致. 在反应的温度区间(2300~2700 K),传统过渡态理论得出的速率常数值的范~围是1.68×1011~3.29×1011cm3·mol-1·s-1, 支持了反应速率常数应小于等于5.0×1011cm3·mol-1·s-1的实验结论. 对反应(1), 理论研究还得出反应物分子可通过分子间作用生成氢键复合物(HBC), 其能量相对于反应物降低32.41 kJ/mol. 反应(2)是一个可经过顺式或反式方式进行的分步反应, 在反应分子间第1步生成N—N键, 再经过一个C—N键断裂过渡态生成产物. 反应(2)控速步骤的位垒为92.79 kJ/mol(顺式)或147.43 kJ/mol(反式). 反应(2)位垒高于反应(1).  相似文献   

6.
OH+ C2H2N←C2H3 + NO→CH3 + NCO反应机理的密度泛函理论研究   总被引:1,自引:1,他引:1  
应用密度泛函理论研究了反应通道(a)C2H3 NO→CH3 NCO和(b)C2H3 NO→OH C2H2N的反应机理.在B3LYP/6-31G(d)水平上优化了反应物、中间体、过滤态、产物的几何构型,通过频率分析确定了11个中间体和10个过渡态.所有的反应物、中间体、过渡态、产物都在CCSD/6-311 G(d,P)水平上进行了单点能较正.并讨论了反应的异构化过程.计算结果表明10是能量最低的中间体,比反应物的能量低308.479kJ/mol;过渡态1/3,2/5,3/4,4/8比反应物的能量高,其中3/4是能量最高的过渡态,比反应物的能量高91.894kJ/mol.通道(a)和(b)的理论放热值分别为111.059和96.619kJ/mol.  相似文献   

7.
采用密度泛函方法(B3LYP)在6-311+G(d,p)基组水平上研究了CH3CH2S自由基H迁移异构化以及裂解反应的微观动力学机理. 在QCISD(T)/6-311++G(d,p)//B3LYP/6-311+G(d,p)+ZPE水平上进行了单点能校正. 利用经典过渡态理论(TST)与变分过渡态理论(CVT)分别计算了在200~2000 K温度区间内的速率常数kTST和kCVT, 同时获得了经小曲率隧道效应模型(SCT)校正后的速率常数kCVT/SCT. 研究结果表明, CH3CH2S自由基1,2-H迁移、1,3-H迁移、C—C键断裂和β-C—H键断裂反应的势垒ΔE≠分别为149.74, 144.34, 168.79和198.29 kJ/mol. 当温度低于800 K时, 主要发生1,2-H迁移反应, 高于1800 K时, 主要表现为C—C键断裂反应, 在1300—1800 K范围内, 1,3-H迁移反应是优势通道, 在计算的整个温度段内, β-C—H键断裂反应可以忽略.  相似文献   

8.
用从头算UHF/6-31G基组研究了异氰酸和羟基生成氨基和二氧化碳即HNCO+OH→NH2+CO2的反应机理.优化得到了反应途径上的过渡态和中间体,并通过振动分析对过渡态和中间体进行了确认.在UMP4/6-31G水平上计算了它们的能量,同时对零点能进行了较正.计算结果表明:此反应是多步反应,先后通过3个过渡态(TS1,TS2,TS3),2个内旋转位垒(PSI,TSII),4个中间体(IM1,IM2,IM3,IM4),其中,IM3→TS2这一步为整个反应的决速步骤,速控步的活化能为202.388lJ/mol.与异氰酸和羟基作用的另一反应通道(即HNCO+OH→H2O+NCO)的活化能(69.038kJ/mol)比较,可看出所研究反应通道为次要反应通道,这与实验结果是一致的.  相似文献   

9.
用从头算UHF/6-31G基组研究了异氰酸和羟基生成氨基和二氧化碳即HNCO+OH--NH~2+CO~2的反应机理.优化得到了反应途径上的过渡态和中间体,并通过振动分析对过渡态和中间体进行了确认.在UMP4/6-31G水平上计算了它们的能量,同时对零点能进行了较正.计算结果表明:此反应是多步反应,先后通过3个过渡态(TS1,TS2,TS3),2个内旋转位垒(TSI,TSII),4个中间体(IM1,IM2,IM3,IM4),其中,IM3--TS2这一步为整个反应的决速步骤,速控步的活化能为202.388kJ/mol.与异氰酸和羟基作用的另一反应通道(即HNCO+OH--H~2O+NCO)的活化能(69.038kJ/mol)比较,可看出所研究反应通道为次要反应通道,这与实验结果是一致的。  相似文献   

10.
CH2O+O[3P]→CHO+OH反应途径和变分速率常数   总被引:1,自引:0,他引:1  
采用QCISD/6-311G[d,p]从头算方法,优化了吸氢反应CH2O+O[3P]→CHO+OH的反应物、过渡态和产物的几何结构,并用QCISD(t,full)/6-311G**//QCISD/6-311G**方法对各驻点进行了单点校正,得出正逆反应的活化位垒分别为38.86kJ@mol-1和67.23kJ@mol-1.IRC(内禀反应坐标)分析指出,该反应是一个C-H键断裂和H-O键生成协同进行的反应,而且在反应途径上存在一个引导反应进行的振动模式,其引导反应进行s区间为-0.4~0.75(amu)1/2.在1300~2270K温度范围内运用改进的变分过渡态理论(ICVT),计算了反应速率常数,与实验结果相当一致.  相似文献   

11.
HNCO+OH——NH~2+CO~2反应理论研究   总被引:1,自引:0,他引:1  
用从头算UHF/6-31G基组研究了异氰酸和羟基生成氨基和二氧化碳即HNCO+OH--NH~2+CO~2的反应机理.优化得到了反应途径上的过渡态和中间体,并通过振动分析对过渡态和中间体进行了确认.在UMP4/6-31G水平上计算了它们的能量,同时对零点能进行了较正.计算结果表明:此反应是多步反应,先后通过3个过渡态(TS1,TS2,TS3),2个内旋转位垒(TSI,TSII),4个中间体(IM1,IM2,IM3,IM4),其中,IM3--TS2这一步为整个反应的决速步骤,速控步的活化能为202.388kJ/mol.与异氰酸和羟基作用的另一反应通道(即HNCO+OH--H~2O+NCO)的活化能(69.038kJ/mol)比较,可看出所研究反应通道为次要反应通道,这与实验结果是一致的。  相似文献   

12.
采用UHF,CIS和CASSCF方法,在aug-cc-pvdz基组水平上对CH2=CClF?h?v→?CH=CClF+H的光解反应通道及其后续反应作了研究.计算表明:分子吸收一个光子后,在第一电子激发态(S1)经过一个过渡态解离与Cl原子同侧的C—H键,这与用CIS方法计算垂直激发得到的π→σ*C-H跃迁及其对Frank-Condon点的计算中分子的单占轨道和键电荷密度变化所预测的结果是一致的.光解产物?CH=CClF(基态)还可再发生反应,经过渡态解离C—Cl键或是C—F键.  相似文献   

13.
H3PO→H2POH异构化反应的直接动力学研究   总被引:3,自引:0,他引:3  
在QCISD(T)/6-311C++G(2df,2pd)//QCISD/6-311C++G(d,p)+ZPE水平上,对H3PO的异构化反应H3PO→(1)H2POH(trans)→(2)H2POH(cis)进行了计算研究.结果表明,H原子由P原子向O原子迁移反应(1)的能垒为250.0kJ/mol,是反应速率控制步骤,而O_H键绕P_O键旋转的构型转化反应(2)的能垒只为12.3kJ/mol.利用经典过渡态理论(TST)与变分过渡态理论(CVT)分别计算了反应(1)在200~2000K温度区间内的速率常数kTST和kCVT,获得了经小曲率隧道效应(SCT)及Eckart模型校正后的速率常数kTST/Eckart和kCVT/SCT.对只涉及H原子迁移的反应(1),量子力学隧道效应的影响在低温段非常明显,而变分效应对反应速率常数的影响很小.  相似文献   

14.
危佳  何宏庆  杨明晖 《化学研究与应用》2007,19(10):1138-1142,1147
本文采用UCCSD(T)/aug-cc-pVTZ方法研究了H NH3反应势能面,获得了夺氢反应和交换反应过渡态的的几何结构和振动频率。夺氢反应的过渡态具有Cs对称性,其能垒为61.92 kJ/mol。交换反应的过渡态具有C3v对称性,其能垒为39.69 kJ/mol。H NH3发生形成Td对称性的反应中间体NH4里德堡自由基。与夺氢反应相比,交换反应具有更低的反应能垒,并且NH4自由基在反应中可形成长寿命的共振态,和夺氢反应形成竞争关系,因此在H NH3反应的量子动力学研究中必须同时考虑这两类反应。本文还采用更大的基组aug-cc-pVQZ和aug-cc-pV5Z研究了势能面对基组的收敛行为。  相似文献   

15.
在CCSD(T)/6-311+G(3df,2p)//M06-2X/6-311+G(3df,2p)水平上研究了(H_2O)n(n=0~2)催化HS和HOCl的反应机理.结果表明,HS与HOCl反应中HS夺取HOCl上的H原子形成产物H_2S和ClO.在无水催化时,该反应存在2种不同的路径(分别经过过渡态TS1和TS2,二者互为顺反结构),对应的能垒分别为100.28和100.91kJ/mol,到达产物(H_2S+ClO)需吸收18.99kJ/mol能量,反应不易发生;在单个水分子参与时,水分子可通过形成弱相互作用或者作为H原子转移桥梁影响反应机理,获得了4种水催化路径,能垒(间于53.97~92.39kJ/mol之间)均低于无水催化过程.同时发现,在反应到达产物前,水分子可以与产物形成中间体IM,IM相对能仅为0.46kJ/mol,有利于产物形成;有2个水分子参与反应时,找到了3条催化路径,最优反应路径过渡态TS7的能垒为45.05kJ/mol,低于无水催化过程,相比单个水分子最优路径能垒(53.97kJ/mol)并无显著降低.  相似文献   

16.
采用密度泛函方法B3LYP/6-311+G(d, p)和耦合簇方法CCSD/6-311+G(d, p)研究了BH2+与H2O的气相离子-分子反应机理. 优化得到了反应途径中各驻点的几何构型, 并采用内禀反应坐标法进行追踪. 从量子拓扑学的角度, 讨论了在反应过程中各化学键的变化. 反应(I)经历了一个四元环过渡态, 找到了这个反应的能量过渡态和两个结构过渡态.  相似文献   

17.
用HF/3-21G解析梯度方法研究H_2CCC:的氢氢键插入和加成反应机理,结果表明,H2CCC:的H—H插入为直接插入,取端端(end-on)接近方式;H_2加成经两步完成.第一步是2+2加成,因对称性禁阻取三中心过渡态,四中心作用发生在反应的后期,第二步是CH_3CHC:的1,2氢重排.预言气相中H—H插入容易发生,势垒值约为45 kJ/mol.  相似文献   

18.
F~2+2HCl→2HF+Cl~2反应机理的密度泛函理论研究   总被引:6,自引:0,他引:6  
用密度泛函理论(DFT)B3LYP方法,在6-311G^*^*基组下,计算研究了反应F~2+2HCl→2HF+Cl~2的机理。求得各可能反应途径的系列过渡态,并通过振动分析和内禀反应坐标(IRC)分析加以证实。比较反应能垒(理论计算活化能)发现,标题反应若以分子与分子作用机理进行,则需克服的最大能垒为150.63kJ.mol^-^1;若以F~2分子先裂解为F原子再反应的机理进行,则需越过能垒154.82kJ.mol^-^1,求得反应F+HCl→HF+Cl的线形和三角形两种过渡态,以三角形较稳定;求得反应HCl+Cl→H+Cl~2的两种过渡态,以线形较稳定。  相似文献   

19.
·C2H3+O2→HC·O+H2CO 的密度泛函理论研究   总被引:2,自引:7,他引:2  
应用密度泛函理论研究了@C2H3+O2→HC@O+H2CO的反应机理.在DFT(B3LYP/6-31G*)水平上对反应过程中所有反应物、中间体、过渡态和产物的几何构型进行优化,通过频率振动分析确认中间体和过渡态.计算IRC反应路径的能量,分析了中间体的异构化过程和各主要原子的自旋密度.  相似文献   

20.
通过密度泛函理论(DFT)研究了钯催化氧化N—H键羰基化反应合成1,3,4-噁二唑-2(3H)-酮杂环化合物的反应机理. 计算结果表明, 这一反应的催化循环包含N1—H活化、 羰基插入、 N2—H活化和还原消除4个阶段. 反应首先通过协同金属化/去质子化机理活化N1—H键, 然后羰基插入Pd—N1键生成稳定的六元金属环中间体, 随后通过一步反应直接发生N2—H键活化, 最后还原消除. 其中, 羰基插入是整个催化循环的决速步骤, 能垒为102.0 kJ/mol. 研究了配体效应和取代基效应, 其结果与已有的实验结果一致.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号