首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7946篇
  免费   424篇
  国内免费   115篇
化学   5492篇
晶体学   76篇
力学   248篇
综合类   10篇
数学   850篇
物理学   1809篇
  2023年   52篇
  2022年   38篇
  2021年   136篇
  2020年   162篇
  2019年   166篇
  2018年   138篇
  2017年   120篇
  2016年   258篇
  2015年   250篇
  2014年   315篇
  2013年   508篇
  2012年   581篇
  2011年   709篇
  2010年   410篇
  2009年   351篇
  2008年   557篇
  2007年   477篇
  2006年   472篇
  2005年   489篇
  2004年   370篇
  2003年   304篇
  2002年   217篇
  2001年   136篇
  2000年   142篇
  1999年   70篇
  1998年   64篇
  1997年   50篇
  1996年   52篇
  1995年   73篇
  1994年   68篇
  1993年   66篇
  1992年   60篇
  1991年   43篇
  1990年   44篇
  1989年   32篇
  1988年   37篇
  1987年   36篇
  1986年   23篇
  1985年   31篇
  1984年   31篇
  1982年   31篇
  1981年   32篇
  1980年   21篇
  1979年   39篇
  1978年   32篇
  1977年   32篇
  1976年   26篇
  1975年   22篇
  1974年   22篇
  1972年   15篇
排序方式: 共有8485条查询结果,搜索用时 17 毫秒
1.
Manganese, the third most abundant transition-metal element after iron and titanium, has recently been demonstrated to be an effective homogeneous catalyst in numerous reactions. Herein, the preparation of silica-supported MnII sites is reported using Surface Organometallic Chemistry (SOMC), combined with tailored thermolytic molecular precursors approach based on Mn2[OSi(OtBu)3]4 and Mn{N(SiMe3)2}2⋅THF. These supported MnII sites, free of organic ligands, efficiently catalyze numerous reactions: hydroboration and hydrosilylation of ketones and aldehydes as well as the transesterification of industrially relevant substrates.  相似文献   
2.
3.
Abstract

We demonstrate the electrical properties of nano energy harvesters (NEHs) with various textiles for smart textiles that can be applied to the next generation wearable electronics. Output voltages and currents of NEHs with various fabrics, such as a cotton, rayon and wool that have different triboelectricity were measured. Cotton, rayon and wool shows the maximum output voltages of 1.250, 3.313 and 4.063 V, respectively. In addition, output currents of those textiles were 0.75, 4.4, 1.063 μA, respectively. Wool, in particular, which has the highest triboelectricity of 350 V exhibits the highest output voltage.  相似文献   
4.
Self‐emulsion polymerization (SEP), a green route developed by us for the polymerization of amphiphilic monomers, does not require any emulsifier or an organic solvent except that the water‐soluble initiators such as 2,2′‐azobis[2‐(2‐imidazolin‐2‐yl)propane]dihydrochloride (VA‐044) and potassium persulfate (KPS) are only used. We report here the polymer nanoscaffolds from a number of amphiphilic monomers, which can be used for in situ encapsulation of a variety of nanoparticles. As a demonstration of the efficacy of these nanoscaffolds, the synthesis of a biocompatible hybrid nanoparticle (nanohybrid), prepared by encapsulating Fe3O4 magnetic nanoparticle (Fe3O4 MNPs) in poly(2‐hydroxyethyl methacrylate) in water, for MRI application is presented. The nanohybrid prepared following the SEP in the form of an emulsion does not involve the use of any stabilizing agent, crosslinker, polymeric emulsifier, or surfactant. This water‐soluble, spherical, and stable nanohybrid containing Fe3O4 MNPs of average size 10 ± 2 nm has a zeta potential value of ?41.89 mV under physiological conditions. Magnetic measurement confirmed that the nanohybrid shows typical magnetic behavior having a saturation magnetization (Ms) value of 32.3 emu/g and a transverse relaxivity (r2) value of 29.97 mM?1 s?1, which signifies that it can be used as a T2 contrast agent in MRI. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019  相似文献   
5.
A recently discovered 2D transition titanium metal carbides also called as MXenes (Ti3C2Tx)-based nanocomposite was prepared with Cu2O through wet precipitation technique, and these materials were further developed as the electrode for sensing glucose by chronoamperometry technique. The prepared MXene-Cu2O (Ti3C2Tx-Cu2O) nanocomposite was characterized by XRD, FTIR, UV–Vis spectroscopy, FE-SEM, EDAX, and Raman spectroscopy. Morphological studies of the composites revealed that the micro-octahedral shape of Cu2O is distributed on the surface of MXene with size larger than bare Cu2O. Further, the prepared composite material was fabricated as a sensing probe, and the electrochemical activities were examined by cyclic voltammetric analysis (CV) and chronoamperometric (CA) methods. From the CV and CA investigation, the current response was higher for the composite than the bare material (Cu2O & MXene) in the presence of glucose. The amperometric investigation of MXene-Cu2O composite for the detection of glucose shows a broad linear range (0.01–30 mM) with a sensitivity of 11.061/μAmM cm?2 and a detection limit of 2.83 μM. Further, the fabricated sensor exhibits good selectivity with interfering species like NaCl, fructose, sucrose, urea, ascorbic acid, lactose, short response time, stability, good reproducibility, and compatibility with human serum sample. From the investigation, the prepared MXene-Cu2O composite is a good candidate for the direct detection of glucose molecules and is also well suitable for clinical diagnosis.  相似文献   
6.
The E. coli siderophore enterobactin, the strongest FeIII chelator known to date, forms hexacoordinate complexes with SiIV, GeIV, and TiIV. Synthetic protocols have been developed to prepare non-symmetric enterobactin analogues with varying denticities. Various benzoic acid residues were coupled to the macrocyclic lactone to afford a diverse library of ligands. These enterobactin analogues were bound to SiIV, GeIV, and TiIV, and the complexes were investigated through experimental and computational techniques. The binding behavior of the synthesized chelators enabled assessment of the contribution of each of the phenolic hydroxy groups in enterobactin to metal-ion complexation. It was found that at least four O-donors are needed for enterobactin derivatives to act as metal binders. Density functional theory calculations indicate that the strong binding behavior of enterobactin can be ascribed to a diminished translational entropy penalty, a common feature of the chelate effect, coupled with the structural arrangement of the three catechol moieties, which allows the triseryl base to be installed without distorting the preferred local metal-binding geometry of the catecholate ligands.  相似文献   
7.
Structural Chemistry - Quinoline- and acridine-based drugs are widely used as anti-breast cancer agents. These drugs act through various mechanisms of action; for example, neratinib acts on...  相似文献   
8.
Nonlinear Dynamics - Quantum features of time-dependent molecular interactions are investigated by introducing a time-varying Hamiltonian that involves a generalized non-central potential....  相似文献   
9.
A class of acceptor–donor–acceptor chromophoric small-molecule non-fullerene acceptors, 1–4, with difluoroboron(iii) β-diketonate (BF2bdk) as the electron-accepting moiety has been developed. Through the variation of the central donor unit and the modification on the peripheral substituents of the terminal BF2bdk acceptor unit, their photophysical and electrochemical properties have been systematically studied. Taking advantage of their low-lying lowest unoccupied molecular orbital energy levels (from −3.65 to −3.72 eV) and relatively high electron mobility (7.49 × 10−4 cm2 V−1 s−1), these BF2bdk-based compounds have been employed as non-fullerene acceptors in organic solar cells with maximum power conversion efficiencies of up to 4.31%. Moreover, bistable resistive memory characteristics with charge-trapping mechanisms have been demonstrated in these BF2bdk-based compounds. This work not only demonstrates for the first time the use of a boron(iii) β-diketonate unit in constructing non-fullerene acceptors, but also provides more insights into designing organic materials with multi-functional properties.

Boron(iii) β-diketonates have been demonstrated to serve as multi-functional materials in NFA-based OPVs and organic resistive memories.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号