首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 371 毫秒
1.
MXenes are novel graphene-like 2-D materials. Cu2O is an effective additive for thermal decomposition of ammonium perchlorate (AP). We reported the synthesis of MXene (Ti3C2), Cu2O and MXene-Cu2O respectively. The samples were characterized by means of X-ray diffraction (XRD) and field emission scanning electron microscopy (FESEM). Results indicate that the MXene is composed of lots of nano-sheets and the thickness is 30 ± 10 nm, and Cu2O nanoparticles nucleate and grow heterogeneously directly on the surface of MXene. The effect of these MXene, Cu2O and MXene-Cu2O samples on the thermal decomposition of AP were investigated using TG-DSC. The results revealed that MXene-Cu2O have a great influence on the thermal decomposition of AP than that of pure MXene and Cu2O.  相似文献   

2.
The unique physical structure and abundant surface functional groups of MXene make the grafted organic molecules exhibit specific electrical and optical properties. This work reports the results of first-principles calculations to investigate the composite systems formed by different organic molecular monomers, namely acrylic acid (AA), acrylamide (AM), 1-aziridineethanol (1-AD) and glucose, and Ti3C2 MXene saturated with different functional groups, namely −OH, −O and −F. The results show that the interaction between organic molecules and the MXene surface depends on the type of functional groups of the organic molecules, while the strength of the interaction is determined by the type of surface functional groups and the number of hydrogen bonds. The bare Ti3C2 and Ti3C2(OH)2 can readily form strong chemical and hydrogen bonds with AA and AM molecules, leading to strong adsorption energy and a large amount of charge transfer, while the interaction between organic molecules and MXene saturated by −F or −O groups mainly exhibits physical interactions, accompanied by low adsorption energy and a small amount of charge transfer. This research provides theoretical guidance for the synthesis of high-performance MXene organic composite systems.  相似文献   

3.
A simple and novel electrochemical immunoassay based on MXene (Ti3C2)−Au nanoparticles (AuNPs) was designed for sensitive screening of a disease-related biomarker, prostate-specific antigen (PSA), by using dopamine-loaded liposomes (DLL) for signal amplification. The system involves two parts, namely, sandwich-type immunoreaction to capture DLL and electrochemical measurement of dopamine. The target PSA can cause a specific antigen-antibody reaction and DLL are enriched in the enzyme-labeled pores. After Triton X-100 is injected into the detection cell, the carried DLL was quickly cracked to release dopamine wrapped in the cavity. A nanocomposite consisting of MXene (Ti3C2) support to immobilize Au nanoparticles (Ti3C2−Au) was utilized to modify a glassy carbon electrode, which gives a strongly enhanced differential pulse voltammetric (DPV) signals for dopamine. In this case, the change of DPV signal depends on the amount of dopamine released by liposomes, which is further positively correlated with the concentration of the analyte PSA. Combining the of MXene (Ti3C2)−AuNPs nanomaterials (large specific surface area, excellent electrical conductivity, and good electrocatalytic properties) with the liposome signal amplification strategy, the electrochemical immunoassay exhibited excellent performance toward PSA determination with a broad linear range of 1 pg/mL to 50 ng/mL and limit of detection down to 0.31 pg/mL (S/N=3) under the optimized testing conditions. High specificity for PSA over other disease-related biomarkers and acceptable nanocomposite/electrode stability were acquired. The excellent analytical performance shows that the current strategy provides an effective detection platform for clinical sample analysis.  相似文献   

4.
The Glucose amount of human blood is very vital because in higher levels than allowed value the corporal biological system was hampered. Therefore, in this study, the Cu2O was deposited on the reduced Graphene oxide (RGO) by polydopamin (PDA) as linker. The new RGO‐PDA‐Cu2O nanocomposite was deposited on the glassy carbon electrode (GCE) surface after its characterization by UV–Visible, fourier transform infrared (FT‐IR), X‐ray diffraction (XRD), Energy‐dispersive X‐ray (EDX), transmission electron microscopy (TEM) and field emission scanning electron microscopy (FESEM) techniques. The electroanalysis of the new electrode was investigated by the cyclic voltammetry (CV), differential pulse voltammetry (DPV) and electrochemical impedance spectroscopy (EIS) methods. The obtained detection limit of glucose (Glu) showed that the deposited GCE by RGO‐PDA‐Cu2O nanocomposite has a high potential for its diagnosis. In addition, this electrode was applied to the Glu detection as biosensor in real samples in order to utilize in commercial applications.  相似文献   

5.
Synergistic enhancement of carrier separation-transport and acceleration of water oxidation kinetics is an effective way to boost the current density of photoanode. Therefore, in this work, we constructed Ti3C2Tx MXene conductive framework by cyclic voltammetric (CV) deposition within BiVO4 to force carrier separation-transfer while also depositing O-vacancied FeOOH by in situ self-hydrolysis to accelerate water oxidation kinetics. Predictably, the constructed MXene–BiVO4–FeOOH composite photoanode exhibits an impressive current density of 4.95 mA/cm2 (1.23 V vs. RHE) and 4.1 times higher than that of pristine BiVO4, as well as an ultra-low onset potential and high stability. This fantastic enhancement is attributed to the MXene conductive framework avoiding carrier recombination, tightening the interface of BiVO4–FeOOH, moreover O-vacancied FeOOH improves the adsorption of H2O to accelerate the water oxidation kinetics. This work demonstrates a successful method for constructing efficient and stable photoanodes as well as diversifying the application of MXene in photoelectrocatalysis.  相似文献   

6.
《Electroanalysis》2006,18(5):478-484
Cuprous oxide nanowhisker was prepared by using cetyltrimethyl ammonium bromide (CATB) as soft template, and was characterized by XRD and TEM methods. The electrochemical properties of nano‐Cu2O and nano‐Cu2O‐methylene blue (MB) modified electrode were studied. The experimental results indicate that nano‐Cu2O shows a couple of redox peaks corresponding to the redox of Cu(II)/Cu(I), the peak currents are linear to the scan rates which demonstrate that the electrochemical response of Cu2O is surface‐controlled. The composite nano‐Cu2O‐Nafion‐MB modified electrode shows a trend of decrease of peak currents corresponding to the Cu (II)/Cu (I). However, the electrocatalytic ability of nano‐Cu2O‐MB composite film to dopamine increases dramatically. At this composite electrode, dopamine shows a couple of quasireversible redox peaks with a peak separation of 106 mV, the peak current increases about 8 times and the oxidation peak potential decreases about 200 mV as compared to that at bare glassy carbon electrode. The peak currents change linearly with concentration of dopamine from 1×10?7 to 3.2×10?4 mol/L, the detection limit is 4.6×10?8 mol/L. The composite electrode can effectively eliminate the interference of ascorbic acid and has better stability and excellent reproducibility.  相似文献   

7.
Copper (I) oxide nanocubes (Cu2O NCs) covered with cobalt oxide nanohexagons (Co3O4 NHs) were prepared through simple chemical method. Here, ascorbic acid is used as reducing and capping agent for the synthesis of nanocubes and nanohexagons. Scanning electron microscopy (SEM), Transmission electron microscopy (TEM), Energy‐dispersive X‐ray spectroscopy (EDX) and X‐ray diffraction spectroscopy (XRD) were employed to confirm the prepared nanocomposite. Cu2O NCs?Co3O4 NHs nanocomposite is drop cast on the glassy carbon electrode (GCE) for the fabrication of glucose sensor. The fabricated Cu2O NCs?Co3O4 NHs/GCE exhibited a better electrocatalytic activity towards the determination of glucose than that of individually fabricated Cu2O NCs and Co3O4 NHs modified GCE. Our finding exhibited a wide linear range from 1 μM to 5330 μM with LOD of 0.63 towards glucose. In addition, the sensor attained appreciable stability, repeatability and reproducibility. Practicality of the sensor was demonstrated in human serum samples. The main advantages of the fabricated sensor are simple, biocompatible, cost effective, fast response and highly stable electrode surface.  相似文献   

8.
Ti3C2TX MXene was synthesized by exfoliating pristine Ti3AlC2 phase with hydrofluoric acid. The simple methods of mechanical mixing and drop-casting of Ti3C2TX and MWCNTs were carried out to prepare sensing electrode of Ti3C2TX/MWCNTs/GCE. The composite and topography, especially the surface functional groups of Ti3C2TX/MWCNTs were analyzed by XRD, SEM, FTIR, XPS, and Raman spectrum. The results turned out that Ti3C2TX was characteristic by accordion-like 2D nanostructure with the surfaces terminated with −OH, −F, and =O. When combining with acid pretreated, the interaction between the functional groups of Ti3C2TX and MWCNTs facilitated the convenience and reproducibility of the robust modified electrodes and could make Ti3C2TX/MWCNTs/GCE possess good synergistic catalytic acceleration by increasing the electron transfer efficiency as well as adsorption and aggregation of MOP analyte onto the electrode surface. Versatile electrochemical measurements of CV, DPV and EIS were used to investigate the electrochemical performance of Ti3C2TX/MWCNTs/GCE sensing platform. The linear detection range is 0.01–100 μM with the limit of detection of 0.0092 μM (S/N=3). The sensor has good stability, repeatability, reproducibility and anti-interference. In the detection of serum and urine samples, it has a good recovery rate.  相似文献   

9.
Nanocomposites composed of cuprous oxide (Cu2O) and graphene were synthesized via reduction of copper(II) in ethylene glycol. This material possesses the specific features of both Cu2O and graphene. Its morphology was characterized by X-ray diffraction, transmission electron microscopy, scanning electron microscopy, and X-ray photoelectron spectroscopy. Cyclic voltammetry was used to evaluate the electrochemical response of a glass carbon electrode (GCE) modified with the nanocomposite towards dopamine (DA). Compared to the bare GCE, the Cu2O nanoparticles modified electrode and the graphene modified electrode, the nanocomposites modified electrode displays high electrocatalytic activity in giving an oxidation peak current that is proportional to the concentration of DA in the range from 0.1 to 10???M,with a detection limit of 10?nM (S/N?=?3). The modified electrode shows excellent selectivity and sensitivity even in the presence of high concentration of uric acid and can be applied to determine DA in real samples with satisfactory results.
Figure
Cu2O/Graphene nanocomposites were successfully prepared, Cu2O particles were uniformly distributed on transparent graphene and no particles scattered out of the supports. Electrochemical experiment results indicate that the nanocomposites modified electrode displays a wide linear region, excellent selectivity and sensitivity to DA.  相似文献   

10.
利用壳聚糖(CHI)溶液分散了纳米二氧化钛(nano-TiO2)和多壁碳纳米管(MWCNT),将该分散液修饰于玻碳电极表面形成纳米复合薄膜;用戊二醛为交联剂在该纳米复合层上固定了葡萄糖氧化酶(GOx),同时以二茂铁为电子媒介体构建了一种新型葡萄糖传感器。利用扫描电镜(SEM)、交流阻抗(AC)对所制备的传感器进行了表征,同时用循环伏安法(CV)和计时电流法(CA)考察了其对葡萄糖的电催化氧化性能。实验结果表明,在优化测试条件下该传感器对葡萄糖在0.5~20.0 mmol.L-1范围内有线性响应,检出限为0.2 mmol.L-1;电流达到95%的稳态时间小于5 s;此生物传感器具有良好的重现性和选择性,能有效排除抗坏血酸、尿酸等常见干扰物的影响并成功应用于饮料中葡萄糖含量的测定。  相似文献   

11.
《中国化学快报》2023,34(4):107426
In this work, Ti3C2Tx MXene with -F, -Cl and -Br surface terminations are synthesized and the effect of these halogen terminations on the lithium storage properties is investigated. A maximum Li+ storage capacity of 189 mAh/g is achieved with Ti3C2Brx MXene much higher than Ti3C2Clx and Ti3C2Fx with 138 mAh/g and 123 mAh/g, respectively. Density functional theory (DFT) calculation shows that the adsorption formation energy of halogen atoms on Ti atoms follows the trend of Ti-F > Ti-Cl > Ti-Br, leading to the same trend in the content of terminations on corresponding MXenes. In addition, inevitable exposure of MXene to oxygen causes competition between halogen and oxygen. Theoretical results show Ti3C2Brx MXene has the highest Ti to O ratio and the lowest Ti to Br ratio, the high lithium affinity of O explains the maximum Li-ion storage capacity with Ti3C2Brx MXene. This work shed light on the opportunity for achieving improved lithium storage properties of MXene electrodes by regulating the surface chemistry.  相似文献   

12.
将稀土纳米材料Er2O3用于构建葡萄糖生物传感器。Er2O3和氧化石墨烯形成复合基底,将葡萄糖氧化酶(GOD)固载在玻碳电极表面。首先利用SEM和XRD技术对所制备的Er2O3和氧化石墨烯纳米材料进行表征。利用EIS和CV对整个生物传感器制备过程进行表征。Er2O3的存在能有效的保持GOD的生物活性并加速其电子传递速率。由于Er2O3和氧化石墨烯之间的协同效应,使得制备的传感器具有一对良好的氧化还原峰,证实GOD和电极之间的直接传递性能。当用于对葡萄糖的电催化氧化时,传感器的CV响应随着葡萄糖浓度的增加而变弱。在葡萄糖浓度为1~10 mmol·L-1范围内,CV响应值与葡萄糖浓度成线性关系。此外,传感器具有好的稳定性和重现性。  相似文献   

13.
《Electroanalysis》2017,29(12):2773-2779
In this work, a facile preparation method of cuprous oxide/gold (Cu2O/Au) nanocomposite was successfully developed. The process consisted of one‐pot co‐reduction of HAuCl4 and CuSO4 using ascorbic acid (AA) as a reducing agent at room temperature under magnetic stirring. The structures and compositions of the as‐prepared products were characterized by SEM, EDS, and XRD. Cyclic voltammetry and chronopotentiometry studies revealed that the as‐prepared cubic Cu2O/Au nanocomposites showed enhanced performance towards the non‐enzymatic catalytic reduction of hydrogen peroxide (H2O2) when compared to single‐component Cu2O nanocubes. The linear range of H2O2 determination spanned over 4 orders of magnitude (1 μM∼16.7 mM) and the detection limit was low as 0.45 μM (S/N=3). The enhanced performance of cubic Cu2O/Au was attributed to: i) the synergistic effect between Cu2O and Au, ii) the increase in surface area induced by the reduced size of the nanocubes, and iii) the improved electrical conductivity due to the presence of Au in the particles. Overall, the cubic Cu2O/Au nanocomposites prepared by the proposed method hold great promise for future practical use in H2O2 detection.  相似文献   

14.
Herein, we report the development of a robust, sensitive, and selective non‐enzymatic electrochemical sensor for the detection of hydrogen peroxide (H2O2). The novel BA modified CN‐dot wrapped Cu2O‐nano‐frogspawn (FS@CN‐dot) sensor probe demonstrated a catalytic property towards H2O2 that allowed the highly sensitive electrochemical detection at a low reduction potential. The as prepared CN‐dot wrapped Cu2O hetero‐structured nanocomposite was analyzed using surface analysis methods to confirm the morphology, crystallinity, and oxidation states of various constituents and dopant elements. Further, the morphological analysis of the Cu2O nanoparticles revealed that the Cu2O retains frogspawns‐liked structure. Under the optimized experimental conditions, the sensor showed a wide dynamic range of H2O2 from 0.5 μM to 9 mM with a detection limit (LD) of 1.2±0.1 nM. The designed sensing probe showed good stability, high sensitivity, and selectivity even in the presence of potential interfering molecules. To check the reliability of the fabricated sensor in biomedical applications, the proposed sensing probe was successfully applied to monitor H2O2 in saliva of a gum‐diseased patient. To the best of our knowledge, this report is the first of its kind not only because of its novel construction style in terms of CN source, but also in terms of real sample applicability as well.  相似文献   

15.
A composite of graphene–cuprous oxide (Cu2O) was prepared using copper acetate-adsorbed graphene oxide (GO) sheets as precursors. In this composite, in-situ formed Cu2O particles were derived from the adsorbed copper acetate which attached to graphene sheets and prevented the aggregation of the reduced graphene oxide sheets. The as-synthesized Cu2O crystals were cube-like particles distributed randomly on the sheets due to the template effect of GO, consequently forming a graphene–Cu2O cubes composite. A preliminary study on the electrochemical behavior of the graphene–Cu2O composite used as anode material for lithium ion batteries was carried out.  相似文献   

16.
Until now, MXenes could only be produced from MAX phases containing aluminum, such as Ti3AlC2. Here, we report on the synthesis of Ti3C2 (MXene) through selective etching of silicon from titanium silicon carbide—the most common MAX phase. Liters of colloidal solutions of delaminated Ti3SiC2‐derived MXene (0.5–1.3 mg mL?1) were produced and processed into flexible and electrically conductive films, which show higher oxidation resistance than MXene synthesized from Ti3AlC2. This new synthesis method greatly widens the range of precursors for MXene synthesis.  相似文献   

17.
Two‐dimensional (2D) materials are promising candidates for advanced water purification membranes. A new kind of lamellar membrane is based on a stack of 2D MXene nanosheets. Starting from compact Ti3AlC2, delaminated nanosheets of the composition Ti3C2Tx with the functional groups T (O, OH, and/or F) can be produced by etching and ultrasonication and stapled on a porous support by vacuum filtration. The MXene membrane supported on anodic aluminum oxide (AAO) substrate shows excellent water permeance (more than 1000 L m−2 h−1 bar−1) and favorable rejection rate (over 90 %) for molecules with sizes larger than 2.5 nm. The water permeance through the MXene membrane is much higher than that of the most membranes with similar rejections. Long‐time operation also reveals the outstanding stability of the MXene membrane for water purification.  相似文献   

18.
《中国化学快报》2023,34(1):107152
Application of Li-oxygen (Li-O2) battery is in urgent need of bifunctional ORR/OER electrocatalyst. A surface-functionalization CoP/Ti3C2Tx composite was fabricated theoretically, with the optimized electronic structure and more active electron, which is beneficial to the electrochemical reaction. The accordion shaped Ti3C2Tx is featured with large specific surface area and outstanding electronic conductivity, which is beneficial for the adequate exposure of active sites and the deposition of Li2O2. Transition metal phosphides provide more electrocatalytic active sites and present good electrocatalytic effect. The CoP/Ti3C2Tx composite served as the electrocatalyst of Li-O2 battery reaches a high specific discharge capacity of 17,413 mAh/g at 100 mA/g and the lower overpotential of 1.25 V, superior to those of the CoP and Ti3C2Tx individually. The composite of transition metal phosphides and MXene are applied in Li-O2 battery, not only demonstrating higher cycling stability of the prepared CoP/Ti3C2Tx composite, but pointing out the direction for their electrochemical performance improvement.  相似文献   

19.
将稀土纳米材料Er2O3用于构建葡萄糖生物传感器。Er2O3和氧化石墨烯形成复合基底,将葡萄糖氧化酶(GOD)固载在玻碳电极表面。首先利用SEM和XRD技术对所制备的Er2O3和氧化石墨烯纳米材料进行表征。利用EIS和CV对整个生物传感器制备过程进行表征。Er2O3的存在能有效地保持GOD的生物活性并加速其与电极之间的电子传递。由于Er2O3和氧化石墨烯之间的协同效应,使得制备的传感器在CV图中呈现一对明显的氧化还原峰,证实GOD和电极之间的直接电子传递性能。当用于对葡萄糖的电催化氧化时,传感器的CV响应随着葡萄糖浓度的增加而变弱。在葡萄糖浓度为1~10 mmol·L-1范围内,CV响应值与葡萄糖浓度成线性关系。此外,传感器具有好的稳定性和重现性。  相似文献   

20.
The increase in energy density of the next generation of battery materials to meet the new challenges of the electrical vehicles era calls for innovative and easily scalable materials with sustainable processes. An innovative CuxO/C nanocomposite material, characterized by a highly conductive 3D-framework, with CuxO/Cu-metal contiguous nanodomains is prepared by electrospinning. The electrode processing is made using a polyacrylic acid binder. The nanocomposite has been fully characterized and the electrochemical performance shows high specific capacity values over 450 galvanostatic cycles at 500 mAg−1 specific current with capacity retention values over 80 %. In addition, the composite shows remarkable high rate performance and highly stable interface, which has been studied by impedance spectroscopy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号