首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   1篇
  国内免费   11篇
晶体学   1篇
物理学   13篇
  2023年   2篇
  2014年   1篇
  2013年   1篇
  2012年   5篇
  2011年   3篇
  2010年   1篇
  2009年   1篇
排序方式: 共有14条查询结果,搜索用时 31 毫秒
1.
We studied the temperature dependence of the light yield of linear alkyl benzene(LAB)-based and mesitylene-based liquid scintillators. The light yield increases by 23% for both liquid scintillators when the temperature is lowered from 26 to-40, correcting for the temperature response of the photomultiplier tube. The measurements help to understand the energy response of liquid scintillator detectors. Especially, the next generation reactor neutrino experiments for neutrino mass hierarchy, such as the Jiangmen Underground Neutrino Observatory(JUNO), require very high energy resolution. As no apparent degradation on the liquid scintillator transparency was observed, lowering the operation temperature of the detector to ~4 will increase the photoelectron yield of the detector by 13%, combining the light yield increase of the liquid scintillator and the quantum efficiency increase of the photomultiplier tubes.  相似文献   
2.
A novel 2-D cosmic ray position detector has been built and studied. It is integrated from a CsI(Na) crystal pixel array, an optical fiber array, an image intensifier and an ICCD camera. The 2-D positions of one cosmic ray track is determined by the location of a fired CsI(Na) pixel. The scintillation light of these 1.0× 1.0 mm CsI(Na) pixels is delivered to the image intensifier through fibers. The light information is recorded in the ICCD camera in the form of images, from which the 2-D positions can be reconstructed. The background noise and cosmic ray images have been studied. The study shows that the cosmic ray detection efficiency can reach up to 11.4%, while the false accept rate is less than 1%.  相似文献   
3.
本研究采用双层150 mm×150 mm闪烁条阵列定位宇宙线的入射和出射位置. 阵列信号光使用波移光纤吸收传输,在ICCD相机前插入前置像增强器,使信号光延迟大于200 ns, 使ICCD可以由外部高速触发信号控制,有效记录随机触发事例.该宇宙线定位系统可以同时多点密集测量 通用探测器测试平台的时间分辨和闪烁光的渡越时间.该新方法与传统时间分辨测量方法相比提高了30倍以上 的效率.实验结果显示:时间探测器的时间分辨好于200 ps,满足通用探测器测试平台的设计要求.  相似文献   
4.
An attenuation length measurement device was constructed using an oscilloscope and LabVIEW for signal acquisition and processing. The performance of the device has been tested in a variety of ways. The test results show that the set-up has a good stability and high precision (sigma/mean reached 0.4 percent). Besides, the accuracy of the measurement system will decrease by about 17 percent if a filter is used. The attenuation length of a gadolinium-loaded liquid scintillator (Gd-LS) was measured as 15.10±0.35 m where Gd-LS was heavily used in the Daya Bay Neutrino Experiment. In addition, one method based on the Beer-Lambert law was proposed to investigate the reliability of the measurement device, the R-square reached 0.9995. Moreover, three purification methods for Linear Alkyl Benzene (LAB) production were compared in the experiment.  相似文献   
5.
具有中子-伽马双模探测能力的卤化物闪烁晶体在辐射探测领域展现出广阔的应用前景。本文使用布里奇曼法生长得到高光学质量的NaI∶Tl和NaI∶Tl, Li闪烁晶体,并系统研究了不同Li浓度掺杂NaI∶Tl晶体的光致激发和发射光谱、时间分辨光致发光曲线、X射线辐照发光光谱、伽马射线激发能谱,以及中子-伽马甄别性能。研究表明,NaI∶Tl晶体和NaI∶Tl, Li晶体在X射线激发下的发光峰位于345和410 nm,均来源于Tl+的sp-s2跃迁发光。随着Li浓度的增加,晶体的光产额由41 000 photons/MeV下降到23 000 photons/MeV,662 keV处的能量分辨率由7.0%劣化到9.6%。1%Li(原子数分数)掺杂的NaI∶Tl晶体具有最优的中子-伽马脉冲形状甄别(PSD)性能,品质因子(FoM)值达到4.56。  相似文献   
6.
Silicon photomultipliers (SiPMs) are a new generation of semiconductor-based photon counting devices with the merits of low weight, low power consumption and low voltage operation, promising to meet the needs of space particle physics experiments. In this paper, comparative studies of SiPMs and traditional vacuum photomultiplier tubes (PMTs) have been performed regarding the basic properties of dark currents, dark counts and excess noise factors. The intrinsic optical crosstalk effect of SiPMs was evaluated.  相似文献   
7.
A micro-pattern gas detector named leak microstructure (LM) has been studied. A new chemical electrolytic technique is introduced to make perfect shaped LM needles with very sharp tips, and this method may be developed to make LM array detectors in batches. The experimental results are presented for both a single needle LM detector and a small LM array detector. The gas gain is up to 105 by calculation from the waveform. Good gain stability and uniformity are achieved. The light emission from the needle tip is also measured in Ar/CF4(95/5) gas mixture. The result shows a promising application for imaging.  相似文献   
8.
The gas gain and energy resolution of single and double THGEM detectors (5 cm×5 cm effective area) with mini-rims (rim less than 10 μm) were studied. The maximum gain was found to reach 5×103 and 2×105 for single and double THGEMs respectively, while the energy resolution for 5.9 keV X-rays varied from 18% to 28% for both single and double THGEM detectors of different hole sizes and thicknesses. Different combinations were also investigated of noble gases (argon, neon) mixed with a quantity of other gases (isobutane, methane) at atmospheric pressure.  相似文献   
9.
The performance of a MultiPixel Photon Counter (MPPC) from room to liquid nitrogen temperatures were studied. The gain, the noise rate and bias voltage of the MPPC as a function of temperature were obtained. The experimental results show that the MPPC can work at low temperatures. At nearly liquid nitrogen temperatures, the gain of the MPPC drops obviously to 35% and the bias voltage drops about 9 V compared with that at room temperature. The thermal noise rate from 106 Hz/mm at room temperature drops abruptly to 0 Hz/mm at -100 ℃. The optimized operation point can be acquired by the experiment.  相似文献   
10.
The BESⅢ detector has a high-resolution electromagnetic calorimeter which can be used for low momentum μ-π identification. Based on Monte Carlo simulations, μ-π separation was studied. A multilayer perceptron neural network making use of the defined variables was used to do the identification and a good μ-π separation result was obtained.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号