首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
NnO2:xEu3+(x=O, 1%, 3%, 5%, molar fraction) fibers were synthesized by electrospinning technology. The size of the as-prepared fibers is relatively uniform and the average diameter is about 200 nm with a large draw ratio. The as-prepared Eu3+ doped SnO2 nanofibers have a rutile structure and consist of crystallitc grains with an average size of about 10 nm. A slight red shift of the A1gand Bag vibration modes and an additional peak at 288 nm were observed in the Raman spectra of the nanofibers. The energies of bandgaps of the SnO2 nanofiber with Eu doping of 1% and 3% are 2.64 eV, and the energy of bandgap is 2.94 eV with Eu doping of 5%(molar fraction). There is only orange emission(5D0→7F1 magnetic dipole transition) for Eu doped SnO2 nanofibers, and no red emission could be observed. The orange emission upon indirect excitation splits into three peaks and the peak intensity at the excitation wavelength of 275 nm is higher than that at the excitation wavelength of 488 nm.  相似文献   

2.
A series of Tm^3+/Dy^3+co-doped Ba3 LaNa(PO4)3 F(BLNPF) phosphors were synthesized successfully via a high-temperature solid-reaction,and luminescence properties were investigated.Upon near violet excitation,BLNPF:Tm^3+,Dy^3+ phosphors exhibit Tm^3+:^1D2-^3 F4 and Dy^3+:^4 F(9/2)-^6 HJ(J=15/2,13/2,11/2)transitions with diffe rent luminescence intensity.The emitting color of the obtained products was found to shift from blue to white as a result of efficient energy transfer(ET) from Tm^3+to Dy^3+ions.According to photoluminescence emission intensity,the positive effect of activator on ET efficiency was calculated and the maximum ET efficiency was found around 72.6% with Dy^3+ concentration was 0.04.By means of Dexter's theoretical model,furthermore,dipole-dipole interaction was confirmed as the mechanism of energy transfer from Tm^3+ to Dy^3+ ions.The results suggested that BLNPF:Tm^3+,Dy^3+ phosphor might be a promising single-phased white-light-emitting phosphor for UV white-light LED.  相似文献   

3.
Both silica glass materials singly doped with rare earth organic complex and co-doped with Al^3 were prepared by in situ sol-gel method respectively. XRD and SEM measurements were performed to verify the non-crystalline structure of the glass. The excitation spectra, emission spectra and IR spectra were measured to analyze the influence of the glass contents on the structure of the glass and the energy level of the doped Eu(IH) ions. The effect of Al^3 on the photoluminescence properties of rare earth organic complex in silica glass was investigated. The IR spectra indicated that the in situ synthesized europium complex molecule was confined to the micropores of the host and the vibration of the ligands was frozen. When Al2O3 was doped into the silica host gel, the rare earth ions in the silica network were wrapped up and dispersed by Al2O3, so the distribution of Eu(Ⅲ) complex in the host was morehomogeneous, and the luminescence intensity of ^5D0-^7F2 transition emission of the Eu^3 ions was improved. The results showed that an appropriate amount of Al^3 added to the gel glass improved the emission intensity of the complex in the silica glass, and when the content of Al2O3 reached 4 mol%, the maximum emission intensity could be obtained compared with that of other samples containing different Al2O3 contents.  相似文献   

4.
Multicolor luminescent rare-earth ion-doped Y2O3 nanocrystals(NCs) were prepared by a solvethermal method.The as-synthesized NCs yielded nanosheets,nanowires(NWs) and nanorods(NRs) with the increase of alkali(NaOH) in oleic acid system.Moreover,Y2O3 nanowires with controllable size have also been obtained.After sintering,the PL intensity of Y2O3:Ln 3+ nanocrystals increased with the changed morphology of the precursor,that is,Y(OH) 3 nanocrystals.Both downconversion(red emission for Y2O3:Eu 3+ and green emission for Y2O3:Tb 3+) and upconversion(red emission for Y2O3:Yb/Er 3+) luminescence of the as-prepared nanocrystals have been demonstrated in this work.We also found that the PL intensity of Y2O3:Ln 3+ NCs dispersed in polar solvent was stronger than that in nonpolar solvent.Their up/downconversion fluorescence and controllable morphology might promise further fundamental research and biochemistry such as nanoscale optoelectronics,nanolasers,and ultrasensitive multicolor biolables.  相似文献   

5.
Using La2(SO4)3 and the active carbon powder as reactants, La2O2S∶Mn2+ red phosphor was synthesized by microwave radiation method. The phosphor was characterized by means of X-ray diffraction (XRD), scanning electron microscopy (SEM), laser-diffraction size analyzer and fluorospectrophotometer. The XRD analysis showed that the phosphor was pure phase La2O2S. The phosphor of La2O2S∶Mn2+ showed hexagonal crystal structure with diverse shapes, such as spherical and rod, with average particle size of 10.22 μm. The emission and excitation spectra of the phosphor were determined by fluorospectrophotometer and the results showed that the excitation spectrum of the phosphor under 600 nm emission wavelength was excitation bands between 250 nm and 350 nm with a peak value of 303 nm. Then ,when exicited under UV 303 nm, the phosphor showed broad band emission of 550~700 nm with a peak at 607 nm. In addition, the optimal effects were obtained for the phosphor preparation when the concentration of the activator Mn2+ was xMn=0.01, the ratio of C and O (nC / nO) in the reactants was 0.6∶1, and the time of reaction was about 1 h. La2O2S∶Mn2+ has strong absorption of UV spectrum and can emit bright red light.  相似文献   

6.
Ovalbumin-stabilized gold nanoclusters(OVA@AuNCs) were prepared with ascorbic acid as a reducing agent. This strategy could realize the synthesis of water-soluble OVA@AuNCs within 20 min. The asprepared fluorescent probe showed a red fluorescence emission at 630 nm. Moreover, the properties of the OVA@AuNCs were characterized by transmission electron microscope, dynamic light scattering,ultraviolet-visible spectroscopy, fluorescent spectroscopy. Based on the surface electron density decrease-induced fluorescence quenching mechanism, the OVA@AuNCs provided high sensitivity and selectivity for sensing copper ions. A good linear relationship was obtained between the fluorescence intensity of OVA@AuNCs and the concentration of copper ions in the range of 5.0-100.0 μmol/L(R~2=0.999) with a detection limit of 640 nmol/L Furthermore, the rat serum copper contents were determined by using the OVA@AuNCs based assay, indicating great potential of fluorescent probes for application in biological and clinical analysis.  相似文献   

7.
As an Hg-free lamp using phosphor, the Bi^3+ and EH^3+ co-doped Y2O2S phosphors were prepared and their luminescence properties under vacuum ultraviolet(VUV) excitation were investigated. The VUV photoluminescent intensity of Y2O2S:Eu^3+ was weak, however, considerably stronger red emission at 626 nm with good color purity was observed in Y2O2S:Eu^3+,Bi^3+ systems. Investigation on the photoluminescence reveals that the strong VUV luminescence of Y2O2S:Eu^3+,Bi^3+ at 147 nm is mainly because the Bi^3+ acts as a medium and effectively performs the energy transfer process: Y^3+-O^2-→Bi^3+→Eu^3+, while the intense emission band at 172 nm is attributed to the absorption of the characteristic ^1So-^1P1 transition of Bi^3+ and the direct energy transfer from Bi^3+ to Eu^3+. The Y2O2S:Eu^3+,Bi^3+ shows excellent VUV optical properties compared with the commercial (Y,Gd)BO3:Eu^3+. Thus, the Y2O2S:Eu^3+,Bi^3+ can be a potential red VUV-excited candidate applied in Hg-free lamps for backlight of liquid crystal display.  相似文献   

8.
A series of red emitting ZnTiO_3 phosphors co-doped with Eu~(3+) and alkali metal ions(Li~+, Na~+ and K~+) was prepared by sol-gel method. The crystal structure of the phosphors was investigated by using X-ray diffraction(XRD) and transmission electron microscopy(TEM) after annealing at 700 ℃. The results show that the crystal structure belongs to the hexagonal phase of ZnTiO_3 with space group R-3:R. The influence of site occupancy of different alkali metal ions on the emission of ZnTiO_3:Eu~(3+) phosphors was investigated in detail. The emission intensity was significantly enhanced by introducing alkali metal ions. In contrast to Eu~(3+) singly doped ZnTiO_3, the red emission intensities of ZnTiO_3:Eu~(3+) with 4 mol% alkali metal ions(Li~+, Na~+, K~+) were enhanced by about 2.1, 1.7 and 1.4 times, respectively. In addition, the Commission Internationale Ed I'eclairage(CIE) chromaticity coordinates of ZnTiO_3:Eu~(3+), Li~+(0.672, 0.328) are quite similar to the National Television Standard Committee(NTSC) standard values for the red(0.670, 0.380).  相似文献   

9.
球形Gd2O3∶Eu纳米发光材料的制备   总被引:1,自引:0,他引:1  
Spherical nanometer Gd2O3∶Eu luminescent materials were prepared by homogeneous precipitation method, and the properties were studied also. TG, FTIR and XRD analysis showed that the precursor was carbonate, the cubic Gd2O3was obtained after calcination. TEM photographs indicated that the samples were spherical and well dispersed with nanometer and submicrometer size of 200~300 nm which is the nanoparticles’ aggregate. The mechanics of agglomerating growth is also discussed. ED photograph showed that the particle was crystalline. The PL analysis exhibited that CTB band of nanometer Gd2O3∶Eu was of 17 nm red shift to bulk materials, and the emission peak was broadened due to the surface and interface effect of nanocrystals.  相似文献   

10.
Spectral properties of Gd3+, Dy3+ and Eu3+ ions in SrGdAlO4 are reported in detail. A cooperative vibronic transition of Gd3+ and the emission from the higher 5DJ (J=1, 2, 3) levels of Eu3+ were observed. Energy transfer occurs from Gd3+ to Dy3+ and to Eu3+. The influence of Gd3+ and Dy3+ concentrations on the luminescence intensity is discussed.  相似文献   

11.
Eu3+-doped Ca10Na(PO4)7 phosphors were successfully synthesized by solid-state reaction techniques. Their structures and photoluminescence characteristics were carefully studied. An efficient red emission under near-ultraviolet excitation is observed. The maximum intensity of luminescence was observed at the Eu3+ concentration around 9 mol%. The quadrupole-quadrupole interaction between Eu3+ ions is the dominant mechanism for concentration quenching of fluorescence emission from Eu3+ ions in Ca10-xNa(PO4)7:xEu3+. Due to the excitation spectrum is well coupled with near UV light, Ca10-xNa(PO4)7:xEu3+ phosphors have potential application as red phosphors in near UV chip-based white light emitting diodes.  相似文献   

12.
以化学沉淀法制备单相的铕离子掺杂硼铝酸盐红色荧光粉YAl3(BO3)4∶Eu3+,考察了焙烧温度、掺铕量等因素对材料性能的影响,用X射线衍射、扫描电镜、激发光谱和发射光谱对荧光粉的结构、形貌和发光性能进行了表征.以尿素为沉淀剂,900℃焙烧沉淀前驱体可得到单相荧光粉YAl3(BO3)4∶Eu3+,反应温度比传统高温固相法降低了300℃;沉淀法制备的荧光粉粒径分布范围小,无团聚现象,粒径约300nm.掺铕量为10%(物质的量比)时发光强度最大.在260nm的紫外光激发下,Eu3+的5 D0→7 F2的电偶极跃迁最强,发射光为618nm的红光.  相似文献   

13.
As an Hg-free lamp using phosphor, the Bi3+ and Eu3+ co-doped Y2O2S phosphors were prepared and their luminescence properties under vacuum ultraviolet(VUV) excitation were investigated. The VUV photoluminescent intensity of Y2O2S:Eu3+ was weak, however, considerably stronger red emission at 626 nm with good color purity was observed in Y2O2S:Eu3+,Bi3+ systems. Investigation on the photoluminescence reveals that the strong VUV luminescence of Y2O2S:Eu3+,Bi3+ at 147 nm is mainly because the Bi3+ acts as a med...  相似文献   

14.
Europium-doped rare-earth oxysulphides (red phosphors) are often used as reference luminophore in pyrene-based pressure sensor coatings for aerodynamic applications. Different red phosphor samples were characterized for their particle size, chemical composition, photoluminescent properties and temperature sensitivity. The red phosphor samples were characterized using energy-dispersive X-ray spectroscopy (EDX) for elemental analysis and scanning electron microscopy (SEM) for morphology and particle size measurement. The particle size was in the range of 1.5-5.7 μm with morphology of hexagonal or spherical shape. It was found that phosphor with higher europium content exhibited higher luminescent emission intensity. The phosphor coatings were prepared by spraying a dispersion of the material in silicone resin. Smooth coatings were obtained by using phosphor samples with smaller particle size. Upon 334 nm excitation, the coatings showed characteristic luminescence 5D0→7FJ (J=0, 1, 2, 3, 4) of the Eu3+ ions. The electronic transition located at 626 nm (5D0→7F2) of Eu3+ ions was stronger than the magnetic dipole transition located at 595 nm (5D0→7F1). Luminescence decay curves obeyed double exponential behaviour. The phosphor samples showed temperature sensitivity of -0.012 to -0.168%/°C in the temperature range of 25-50 °C.  相似文献   

15.
Polycrystalline LaBSiO5:Eu3+,R3+ (R=Bi or Sm) phosphors have been synthesized by a facile sol-gel method. The phosphors have been characterized by thermogravimetric analysis/different scanning calorimeter, scanning electron microscopy, X-ray diffractometer and fluorescence measurements. It was found that the emission intensity of LaBSiO5:Eu phosphors increases clearly and reaches a maximum at 30 mol% with increasing of Eu3+ concentration. The incorporation of Bi3+ ions and/or Sm3+ ions have greatly enhanced the emission intensity of Eu3+ upon excitation with 391 nm light. The possible sensitization mechanisms of Sm3+ and/or Bi3+ on Eu3+ emission intensity have been investigated and discussed. The high brightness and short luminescence decay times make it promising red-emitting candidates for white light-emitting diodes.  相似文献   

16.
解文杰  徐鑫 《无机化学学报》2011,27(9):1738-1742
通过固相反应制备了系列Ca掺杂的Ba2Al2Si10N14O4∶Eu2+绿色荧光粉,发现当半径较大的Ba被Ca取代后导致了晶格的收缩,通过X射线衍射(XRD)测量和Unitcell软件计算发现Ca的最大掺杂量在20%。Ca掺入Eu0.4Ba1.6Al2Si10N14O4荧光粉后,可有效地提高光转换性能,并使激发光谱发生一定程度的红移和宽化,从而被近紫外宽波段光有效激发,与近紫外LED的发射光谱匹配。同时Ca的掺杂也使发射光谱发生了可控的红移,可以由520 nm的绿光红移至548 nm的黄光区域。进一步发现Eu2+的淬灭浓度随着20%Ca的掺入而降低,这是由于Ca掺入导致的晶格收缩使Eu2+离子间距离减小。最后在CIE色度图中对不同Ca,Eu浓度的荧光粉的色坐标位置进行比较,发现可通过Ca,Eu浓度的变化在很大范围内调制荧光粉的发光性能。  相似文献   

17.
使用NH4HCO3-NH3.H2O混合沉淀剂,采用化学共沉淀法合成(Ca1-x-yLuy)MoO4:xEu3+红色荧光粉,通过XRD、EDS、荧光光谱和CIE色度图研究该荧光粉的晶体结构、成分组成及发光性能。结果表明,实验按照理论化学计量比成功合成了(Ca1-x-yLuy)MoO4:xEu3+红色荧光粉,该荧光粉为CaMoO4白钨矿结构;(Ca1-x-yLuy)MoO4:xEu3+具有7F0→5L6(394 nm)和7F0→5D2(465 nm)的强电子吸收,且在613 nm处可发射高强度红光,其色坐标为(0.666 5,0.332 9),明显优于传统的Y2O2S:Eu3+红色荧光粉;此外,当Lu含量为30mol%时,荧光粉发光强度最佳。  相似文献   

18.
As an Hg-free lamp using phosphor,the Bi3+ and Eu3+ co-doped Y2O2S phosphors were prepared and their luminescence properties under vacuum uitraviolet(VUV) excitation were investigated.The VUV photolumineseent intensity of Y2O2S:Eu3+ was weak,however,considerably stronger red emission at 626 nm with good color purity was observed in Y2O2S:Eu3+,Bi3+ systems.Investigation on the photoluminescence reveals that the strong VUV luminescence of Y2O2S:Eu3+,Bi3+ at 147 nm is mainly because the Bi3+ acts as a medium and effectively performs the energy transfer process: Y3+-O2→Bi3+→Eu3+,while the intense emission band at 172 nm is attributed to the absorption of the characteristic 1So-1P1 transition of Bi3+ and the direct energy transfer from Bi3+ to Eu3+.The Y2O2S:Eu3+,Bi3+ shows excellent VUV optical properties compared with the commercial (Y,Gd)BO3:Eu3+.Thus,the Y2O2S:Eu3+,Bi3+ can be a potential red VUV-excited candidate applied in Hg-free lamps for backlight of liquid crystal display.  相似文献   

19.
采用水热法合成前驱体,后经热处理方式制备不同晶相的LaBO3∶Eu^3+荧光粉。通过X射线衍射(XRD)、电子扫描电镜(SEM)、红外光谱和荧光光谱对样品的结构、形貌和发光性能进行了研究。并研究了硼酸用量、热处理温度及初始溶液pH等对晶相结构和发光性能的影响。XRD研究结果表明:合成样品具有单斜结构、正交结构及单斜和正交两相混合结构。适当的硼酸用量、较高的热处理温度及较高的初始溶液pH值易于获得正交结构的荧光粉。红外光谱显示:pH值和硼酸用量影响前驱体成分,热处理温度影响晶相的转变。SEM结果显示:LaBO3∶Eu^3+荧光粉的晶粒尺寸随着pH值的增加逐渐减小,与XRD计算结果相一致。荧光光谱结果表明:正交结构的LaBO3∶Eu^3+发光粉具有较高的紫外吸收和较为纯正的红色发射强度。  相似文献   

20.
采用溶胶-凝胶法合成了YNbO4∶Tb^3+,Sm^3+系列荧光粉。光谱测试表明:体系中的NbO43-基团能够吸收紫外光并将能量传递给Tb^3+和Sm^3+,从而增强荧光粉的发光强度。在290 nm激发下,YNbO4∶Tb^3+,Sm^3+荧光粉的发射光谱中既出现了Tb^3+的绿光发射又出现了Sm^3+的橙光发射。通过改变Sm^3+的掺杂浓度,实现了荧光粉发射光的光色可调。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号