首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
通过固相反应制备了系列Ca掺杂的Ba2Al2Si10M14O4:Eu2+色荧光粉,发现当半径较大的Ba被Ca取代后导致了晶格的收缩,通过X射线衍射(XRD)测量和Unitcell软件计算发现Ca的最大掺杂量在20%.Ca掺人Eu0.4Ba1.6Al2Si10N14O4荧光粉后,可有效地提高光转换性能,并使激发光谱发生一定程度的红移和宽化,从而被近紫外宽波段光有效激发,与近紫外LED的发射光谱匹配.同时Ca的掺杂也使发射光谱发生了可控的红移,可以由520 nm的绿光红移至548 nm的黄光区域.进一步发现Eu2+的淬灭浓度随着20% Ca的掺入而降低,这是由于Ca掺入导致的晶格收缩使Eu2+离子间距离减小.最后在CIE色度图中对不同Ca,Eu浓度的荧光粉的色坐标位置进行比较,发现可通过Ca,Eu浓度的变化在很大范围内调制荧光粉的发光性能.  相似文献   

2.
以SrCO3,Si3N4,Eu2O3为原料,在N2气氛下,采用自还原高温固相法制备了SrSi2O2N2:Eu2+荧光粉。研究了该荧光粉的物相结构、发光性能和晶体形貌,同时对比在不同气氛下合成的荧光粉。结果表明,在N2气氛与N2/H2气氛下分别合成的SrSi2O2N2:Eu2+荧光粉物相结构和光谱特性基本一致。显示出合成了主晶相SrSi2O2N2,但还含有少量未知的中间项。Eu2+浓度的变化不影响激发状态,而发射光谱的波长在Eu2+浓度为1mol%-20mol%之间,从530 nm的绿光红移至550 nm的黄绿光区域。同时,激发光谱覆盖的范围宽,均能有效的被UV或蓝光激发,这意味着该类荧光粉在白光LED方面有可能得到广泛的应用。  相似文献   

3.
采用高温固相法在空气中合成了Ba1.97-yZn1-xMgxSi2O7∶0.03Eu,y Ce3+系列荧光粉。分别采用X-射线衍射和荧光光谱对所合成荧光粉的物相和发光性质进行了表征。在紫外光330~360 nm激发下,固溶体荧光粉Ba1.97-yZn1-xMgxSi2O7∶0.03Eu的发射光谱在350~725 nm范围内呈现多谱峰发射,360和500 nm处有强的宽带发射属于Eu2+离子的4f 65d1-4f 7跃迁,590~725 nm红光区窄带谱源于Eu3+的5D0-7FJ(J=1,2,3,4)跃迁,这表明,在空气气氛中,部分Eu3+在Ba1.97-yZn1-xMgxSi2O7基质中被还原成了Eu2+;当x=0.1时,荧光粉Ba1.97Zn0.9Mg0.1Si2O7∶0.03Eu的绿色发光最强,表明Eu3+被还原成Eu2+离子的程度最大。当共掺入Ce3+离子后,形成Ba1.97-yZn0.9Mg0.1Si2O7∶0.03Eu,y Ce3+荧光粉体系,其发光随着Ce3+离子浓度的增大由蓝绿区经白光区到达橙红区;发现名义组成为Ba1.96Zn0.9Mg0.1Si2O7∶0.03Eu,0.01Ce3+的荧光粉的色坐标为(0.323,0.311),接近理想白光,是一种有潜在应用价值的白光荧光粉。讨论了稀土离子在Ba2Zn0.9Mg0.1Si2O7基质中的能量传递与发光机理。  相似文献   

4.
以SrCO3,Si3N4,Eu2O3为原料,在N2气氛下,采用自还原高温固相法制备了SrSi2O2N2:Eu2+荧光粉.研究了该荧光粉的物相结构、发光性能和晶体形貌,同时对比在不同气氛下合成的荧光粉.结果表明,在N2气氛与N2/H2气氛下分别合成的SrSi2O2N2:Eu2+荧光粉物相结构和光谱特性基本一致.显示出合成了主晶相SrSi2O2N2,但还含有少量未知的中间项.Eu2+浓度的变化不影响激发状态,而发射光谱的波长在Eu2+浓度为l mol%~20mol%之间,从530 nm的绿光红移至550 nm的黄绿光区域.同时,激发光谱覆盖的范围宽,均能有效的被UV或蓝光激发,这意味着该类荧光粉在白光LED方面有可能得到广泛的应用.  相似文献   

5.
采用高温固相法制备了SrAl2Si2O8∶Eu2+系列荧光粉,研究了灼烧温度以及助熔剂硼酸浓度和激活剂Eu2+离子浓度对发光性能的影响,研究了SrAl2Si2O8的微结构。结果表明,以3.0wt%H3BO3为助熔剂,在1250℃灼烧3h可制备发光性能优良的SrAl2Si2O8∶Eu2+荧光粉,Eu2+离子的最佳掺杂浓度为2.5mol%,Eu2+离子浓度过大时的浓度猝灭是由电偶极-电四极之间的相互作用引起的。SrAl2Si2O8∶Eu2+的激发和发射光谱均为宽带谱,在280~380nm光的激发下,可发射峰值波长位于429nm的蓝色光。  相似文献   

6.
采用高温固相反应法在还原气氛下制备了Li2Sr0.995-x SiO4:0.005Eu2+,xLa3+荧光粉。利用X射线衍射仪、荧光光谱仪和紫外可见分光光度计对样品的晶体结构、激发光谱、发射光谱与荧光衰减寿命以及漫反射光谱进行测试分析。实验结果表明:所制得的样品为单一相的Li2SrSiO4晶体结构化合物。Li2Sr0.995-x SiO4:0.005Eu2+,xLa3+荧光粉的激发光谱均呈现出宽激发带,其中最强的激发峰位于408 nm左右。在此波长激发下可得到峰值位于570 nm左右的宽波段单峰发射光谱,其对应于Eu2+离子4f65d1→4f7电子跃迁。La3+掺杂Li2SrSiO4:Eu2+荧光粉基质产生了晶格缺陷[2La·Sr·V″Sr],其可以吸收光能并将能量传递给发光中心离子Eu2+,进而增强Li2Sr0.995SiO4:0.005Eu2+荧光粉的发光强度。漫反射光谱和荧光衰减寿命测试结果也证实La3+掺杂能够增加Eu2+的激发态吸收能量,延长发光中心Eu2+离子荧光衰减寿命。  相似文献   

7.
采用高温固相反应法制备了不同浓度Si-N共掺的CaAl2O4:Eu2+蓝色荧光粉,发现只需2%(摩尔分数)的Si-N共掺就可以明显提高荧光粉的荧光性能。研究还发现在CaAl2O4:Eu2+,Sm3+中掺入Si-N后,荧光粉的荧光强度和余辉性能都有提高。通过荧光粉的光谱图,发现共掺没有改变荧光粉中发光中心Eu离子的价态,而电子顺磁共振(EPR)谱则表明,Si-N共掺对Eu离子周围的配位环境产生了较大的影响。这说明掺杂的Si-N倾向于取代Eu2+附近的Al-O,并且由于Si-N键相对于Al-O键具有较短的键长,使发光中心周围晶体骨架的刚性得到了增强,从而减少了晶格热震动导致的非辐射跃迁能量损失,提高荧光粉的发光性能。同时,热释光谱表明,掺杂的Si-N会在发光离子周围产生新的缺陷能级,从而提高荧光粉的余辉性能。  相似文献   

8.
采用高温固相法制备了碱土金属离子(Mg2 ,Ca2 ,Ba2 )掺杂的SrAl2O4:Eu2 ,Dy3 长余辉荧光粉.XRD谱分析表明,随着基质中掺人的碱土金属离子(Mg2 ,Ca2 ,Ba2 )浓度增加,基质晶格常数也随之发生变化.Mg2 ,Ca2 和Ba2 3种碱土离子在SrAl2O4中的固溶范围分别为40%,15%和30%.光谱分析则表明在固溶范围内随着掺杂Mg3 ,Ca2 和Ba2 浓度的增大,样品的发射峰值会在480~530 nm范围出现规律性移动.适当浓度的Mg2 ,Ba2 掺杂会不同程度地提高样品的发光强度,而Ca2 的掺杂则会降低发光强度.但是碱土金属离子(Mg2 ,Ca2 ,Ba2 )的掺杂并不能延长SrAl2O4:Eu2 ,Dy3 荧光粉的余辉时间.  相似文献   

9.
采用EDTA-柠檬酸联合配位法制备一系列组成的(Sr1-xEux)2CaMoO6橙红色荧光粉。通过X射线衍射、拉曼光谱、扫描电镜及荧光光谱研究不同Eu3+离子掺杂浓度下Sr2CaMoO6∶Eu3+荧光粉的晶体结构、掺杂位置、形貌及其光致发光性能。Rietveld全谱拟合结果表明:掺杂后样品为(Ca/Mo)O6八面体少量倾斜的空间群为P21/n的正交双钙钛矿结构,随着Eu3+离子共掺杂浓度的增加,样品的晶胞体积减小;Eu3+离子取代八面体间隙的Sr2+位置致使双钙钛矿的T2g(1)拉曼振动模发生蓝移;在近紫外区宽而强电荷迁移带和蓝光激发下,该荧光粉分别发射以Eu3+离子5D0-7F1磁偶极跃迁为主的橙光和以5D0-7F2电偶极跃迁为主的红光,组成为(Sr0.98Eu0.02)2CaMoO6的荧光粉具有最强的橙红光发射强度,是一种潜在的适用于近紫外LED芯片的光转换红光材料。  相似文献   

10.
KSrBP2O8:RE(RE=Eu2+,Tb3+,Eu3+)荧光粉的制备与发光性能研究   总被引:1,自引:0,他引:1  
采用高温固相反应法制备了KSrBP2O8:RE(RE=Eu2+,Tb3+,Eu3+)系列荧光粉。利用X射线衍射仪对样品的物相结构进行了分析,结果表明:稀土离子的掺入没有改变荧光粉的主晶相。利用荧光光谱仪对样品的发光性能进行了测试,发现在近紫外光激发下掺杂Eu2+离子的样品具有宽带发射峰,最强发射位于450 nm左右,对应于Eu2+离子的4f65d1→4f7辐射跃迁。随着Eu2+掺杂量的增加,发射光从蓝光逐渐转变到蓝白光。另外,KSrBP2O8:Tb3+和KSrBP2O8:Eu3+能够在近紫外光激发下分别发射出绿光和红光,其最佳掺杂浓度分别为0.04%和0.08%(摩尔分数)。  相似文献   

11.
采用高温固相法,在还原气氛下制备出Al2O3/蒙脱土:Eu2+光致发光材料。研究了原料配比、烧结温度、保温时间以及激活剂Eu2+的含量对发光性能的影响。实验结果表明:加入蒙脱土后,所制备的样品仍保持Al2O3的架状结构,晶格常数发生变化,晶体产生畸变,使得Eu2+更容易进入到晶格中。荧光光谱分析显示,发射光谱是两个宽峰组成,对应于Eu2+的4f65d→4f7(8S7/2)宽带允许跃迁。发光机制分析认为,宽峰结构由Eu0.92[Al1.76Si2.24O8]新相产生,生成的新相增加了Eu2+的取代格位,形成新的发光中心。因此Eu2+不仅取代了Al2O3八面体中Al的格位,而且取代了蒙脱土层间所吸附的阳离子格位,使样品发光强度提高了220%。  相似文献   

12.
王飞  田一光  张乔 《无机化学学报》2014,30(11):2530-2536
由高温固相反应制得Sr0.955Al2Si2-xTixO8∶Eu2+(x=0~1.0)系列试样,研究了Ti4+置换Si4+对其晶体结构和光谱特性的影响。Ti4+以类质同相替代Si4+进入基质晶格中,形成了连续固溶体,其晶胞参数a,b,c,β和晶胞体积V随Ti4+置换量呈线性递增。Ti4+置换Si4+对晶胞参数c的影响显著,b其次,a最小。荧光激发谱为宽带,位于230~400nm,由267nm、305nm、350nm和375nm4个峰拟合成,表观峰值位于351nm;随着Ti4+置换量的增加,半高宽(FWHM)从105nm减小到93nm。发射光谱位于380~600nm,表观峰值位于407nm,可由406nm和441nm两峰拟合而成并且随Ti4+置换量增加线性红移,Ti4+进入晶格对长波长发射中心影响较少;Ti4+置换量为1.0时,表观发射峰位从407nm红移至417nm;利用试样荧光光谱和VanUitert经验公式,得出SrAl2Si2O8∶Eu2+中Sr2+的配位数为9。随着Ti4+置换量Si4+进入基质晶格,造成Eu-O距离变小,使得Eu2+所处的晶体场强度增强,发光中心Eu2+的5d能级分裂增大,造成Eu2+最低发射能级重心下移,两拟合谱峰峰位均呈线性红移。  相似文献   

13.
王飞  田一光  张乔  赵文光 《无机化学学报》2010,26(12):2170-2174
采用高温固相法在弱还原气氛下制备了Ca0.955Al2-xGaxSi2O8∶Eu2+(x=0~1.0)系列荧光粉,研究了Ga3+置换Al3+对晶体结构和光谱特性的影响。Ga3+以类质同相替代CaAl2Si2O8晶格中的Al3+形成连续固溶体,晶胞参数a,b,c和晶胞体积V随Ga3+置换量呈线性增大;晶面夹角α,β和γ随Ga3+置换量的增加呈线性递减。荧光激发谱为宽带,位于230~420 nm,可拟合成4个峰,表观峰值位于352 nm;随着Ga3+置换量的增加,半高宽从112 nm减小到98 nm。发射光谱位于375~560 nm,可由421和457 nm两峰拟合而成,表观峰值位于425 nm,随着Ga3+置换量的增加,两拟合峰均线性红移,且拟合峰强度比呈线性递减。  相似文献   

14.
采用微波辅助法合成了蓝-绿色荧光粉Li2CaSiO4∶Eu2+,该荧光粉能很好的与紫外光及蓝光LED匹配。分别采用X射线衍射(XRD)、扫描电镜(SEM)和激发-发射光谱(PLE/PL)对样品进行了表征。X射线衍射数据与标准卡片PDF#27-290很好吻合。扫描电镜测试表明样品粒径在2~5μm。在紫外光和蓝光激发下,Li2CaSiO4∶1%Eu2+发射主峰位于478 nm,对应于Eu2+的t2g→8S7/2电子跃迁,半高峰宽31 nm。样品发光性能与Eu2+掺杂浓度有关,且Eu2+的最佳掺杂浓度为1%。合成的样品色坐标为(0.09,0.24),可作为白光LED用蓝-绿色荧光材料。  相似文献   

15.
采用高温固相法制备了Eu2+/Mn2+单激活和共激活的M3MgSi2O8-M2SiO4(M=Ba,Ca)两相荧光粉.通过X射线衍射(XRD)和荧光光谱(PL)对样品材料的晶体结构和光谱性能进行了表征.XRD测试结果表明所合成的样品具有M3MgSi2O8和M2SiO4两种晶相结构.PL测试显示,Eu2+在Ba3MgSi2O8-Ba2SiO4体系中发射442和502nm两个波带的光;而Eu2+在Ca2+部分取代Ba2+的BaCa2MgSi2O8-Ba1.31Ca0.69SiO4体系中发射420~520nm的连续波带,并且激发光谱向长波扩展,更加适用于被InGaN芯片(395 nm)激发.通过改变Mn2+的掺杂量可制得颜色可调的BaCa2MgSi2O8-Ba1.31Ca0.69SiO4:Eu2+,Mn2+白光荧光粉.  相似文献   

16.
采用高温固相法合成了Ba(Y1-0.5x-yAly)2S4:xHo3+系列荧光粉。在465 nm蓝光激发下,荧光粉的发射光谱呈多谱带发射,主峰位于492、543和661 nm处,分别对应于Ho3+的5F3→5I8,(5S2,5F4)→5I8和5F5→5I8跃迁发射。研究了Ho3+和Al3+掺杂量对BaY2S4:Ho3+发光性能的影响。结果表明,随着Ho3+掺杂量的逐渐增大,荧光粉的发光颜色由绿色逐渐向红色转变;适量Al3+取代Y3+可以提高BaY2S4:Ho3+荧光粉的发光强度。荧光粉Ba(Y0.665Al0.3)2S4:0.07Ho3+在蓝光(465 nm)激发下发射黄光,是一种潜在的白光LED用黄色荧光粉。  相似文献   

17.
采用高温固相法制备了Sr2.975-xCaxAlO4F:Ce30.+025(0≤x≤1.0)发光材料,通过X射线衍射、荧光光谱测试分析,研究了Ca2+掺杂对晶体结构和发光性能的影响。XRD测试表明Ca2+的掺入并没有改变基质晶格的结构类型,且在Sr3AlO4F基质中固溶极限不超过x=0.9。荧光光谱分析表明,Ca2+掺入后能有效提高发光强度,使激发光谱宽化和发射光谱红移,在Ca2+掺入量为x=0.4时发射强度最高。考察了Sr3-xCaxAlO4F:Ce3+(x=0,x=0.4)在不同Ce3+浓度的发射强度与峰值波长,发现Ca2+掺杂量由x=0增加至x=0.4时,对应的Ce3+的猝灭浓度由0.01降低至0.0025,并且Ce3+的猝灭机制为电偶极-电偶极相互作用。  相似文献   

18.
Ca10(Si2O7)3Cl2:Eu2+Mn2+单-基质白光荧光粉的发光性质   总被引:1,自引:0,他引:1  
用高温固相法合成了颜色可调的Ca10(Si2O7)3Cl2:Eu2+Mn2+荧光粉.研究了它的发光性质和Eu2+与Mn2+之间的能量传递.Eu2+离子在Ca10(Si2O7)3Cl2晶体中形成了峰值为426 nm和523 nm的5d→4f跃迁发光,Eu2+中心向Mn2+中心传递能量,敏化Mn2+离子4T1(4G)-6A1(6S)跃迁而产生585 nm的黄光发射.黄绿蓝3个发射带叠加在单一基质中实现了白光发射.3个发射带的激发谱范围位于250-480 nm处,Ca10(Si2O7)3Cl2:Eu2+Mn2+在紫外-近紫外波段(350~410 nm)范围内有很强的激发,是一种适合InGaN管芯激发的单一基质白光LED荧光粉.  相似文献   

19.
高温固相法合成Ba0.11Sr2.89-2x-2yCexTbyNax+yAlO4F荧光粉,并用X射线衍射(XRD)、荧光光谱(PL)测定分析了其晶体结构及光谱性质。结果表明:当Tb3+掺杂量x=0.07时,发光强度最高,发射主峰位于545 nm,并进一步研究了Ce3+,Tb3+共掺的样品中Ce3+→Tb3+能量传递过程。其次,测试由近紫外LED(~380 nm)和三基色荧光粉(Ba0.11Sr2.89Ce0.01Tb0.07Na0.08AlO4F,BAM and Sr2Si5N8:Eu2+)封装的白光LED光电性能,其色品坐标(x=0.3223,y=0.3408),色温5500 K,显色指数为86.26。因此,Ba0.11Sr2.89-2x-2yCexTbyNax+yAlO4F可作为一种潜在的适用于近紫外LED激发的荧光材料。  相似文献   

20.
采用高温固相法合成Sr2-mMg1-nSi2O7∶mTb3+,nLi+(m=0.03~0.50,n=m)系列荧光粉。使用X射线衍射仪和荧光光谱仪对样品的物相和发光性质进行了表征。在377 nm紫外光激发下,荧光粉的发射光谱呈多谱带发射,主峰位于490 nm,542 nm,590 nm和613 nm处,分别对应于Tb3+的5D4→7FJ(J=6,5,4,3)跃迁发射。调节Tb3+离子掺杂浓度,可实现荧光粉的发光颜色从蓝到白、黄、绿的可调发射;名义组成为Sr1.95Mg0.95Si2O7∶0.05Tb3+,0.05Li+的荧光粉在紫外光(377 nm)激发下发白光,其色坐标(0.322,0.317)接近纯白光(0.33,0.33),是一种潜在的LED用单基质白光荧光粉。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号