首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
采用顶空-气相色谱法对包装材料中可能存在的18种有机溶剂残留进行了分析。选取三种极性不同的毛细管柱进行分离,结果发现Vocol中等极性柱分析效果较好。色谱进样口温度170℃;检测器温度250℃;柱温程序升温方式:40℃保持3min,以4℃·min-1速率升温至60℃,保持5min,再以10℃·min-1速率升温至120℃,保持10min;载气流速:1.8mL·min-1,分流比为5∶1.。样品加热平衡温度为90℃,加热时间为30min。所建立的方法线性较好,操作简便,各有机溶剂检出限在0.002~0.007mg·m-2之间,回收率在93.20%~102.53%范围内。通过对12种包装材料进行检测,表明该方法适用于包装材料中溶剂残留量的检测。  相似文献   

2.
顶空进样气相色谱法检测啤酒中乙醛   总被引:3,自引:0,他引:3  
建立了项空自动进样气相色谱法测定啤酒发酵液中乙醛含量的方法.检测条件优化为:顶空进样器平衡温度70℃,平衡时间30 min;色谱柱初始温度40℃,经程序升温10℃/min到180℃;柱流量1.2 mL/min,加盐量1.8g.对不同浓度的乙醛标准溶液进样测定,标准曲线证明线性良好,R2为0.999,线性范围2~64 m...  相似文献   

3.
建立测定磷酸三甲苯酯临、间、对位异构体含量的气相色谱方法。通过优化色谱分析条件,如降低初始柱箱温度和程序升温速度,可较好分离开TCP的10种同分异构体。选用弱极性的AB–5MS色谱柱,设置柱箱初始温度为120℃,升温速度为3℃/min,终温为300℃。使用相应的纯物质,对其中的临-临-临,间-间-间,对-对-对进行了定量分析。三种异构体在各自的线性范围内均呈良好的线性,线性相关系数大于0.999,检出限为0.162 7~0.168 8 mg/L,测定结果的相对标准偏差小于5%(n=6)。该方法检出限低,重现性好,适合于磷酸三甲苯酯异构体含量的检测。  相似文献   

4.
建立塑胶玩具中多环芳烃的气相色谱–质谱检测方法。样品用四氢呋喃溶剂超声提取60 min,提取液以乙腈净化。以DB–5MS色谱柱为分离柱,柱温程序:70℃保持1 min,以10℃/min升温至240℃,保持2 min,然后以8℃/min升温至280℃,保持5 min。16种多环芳烃的质量浓度在0.002~0.18 mg/L范围内线性良好,相关系数均大于0.991,定量限为0.12~0.20 mg/kg。测量结果的相对标准偏差为4.2%~7.4%(n=6),加标回收率为84.9%~116.7%。该方法简单、快速、准确、重现性好,能够满足目前对塑胶玩具中多环芳烃的检测要求。  相似文献   

5.
本文采用程序升温脱附技术,考察了MoO_3·Bi_2O_3·P_2O_5/SiO_2催化剂晶格氧的逸出和丁烯-1在催化剂上的程序升温脱附特性和表面反应。 实验结果表明:程序升温脱附峰T_M值随丁烯-1吸附量的增加而逐渐增高。从脱附物组成的色谱分析证实,在程序升温脱附过程中吸附的丁烯-1在表面晶格氧参与下发生复杂的催化反应,不单有丁烯异构物、聚合物、丁二烯,还有含氧化合物的生成。丁烯1和其产物的总包脱附活化能随丁烯-1吸附量的增加而增大。采用在不同脱附温度下切割程序升温脱附溜出物和改变程序升温脱附前的抽空条件然后进行色谱分析,初步对丁烯-1在催化剂上的表面反应活性中心进行了分类,并估算了各类反应中心的数目。当温度低于120℃时,发生异构化和双聚反应,高于120℃时有显著的氧化和氧化脱氢反应。还从吸附等温线计算了不同复盖度时丁烯的等容吸附热。并根据本文实验结果和松浦等从经典吸附法求得的丁烯吸附热值进行了讨论。  相似文献   

6.
采用程序升温脱附(TPD)技术测定了苯、噻吩和正辛烷在NaY上以不同升温速率升温时的TPD谱图. 利用TPD谱图的峰形和其微分曲线判断了程序升温脱附过程中的脱附级数. 提出了一种利用最小二乘法计算吸附剂/催化剂的脱附活化能及其动力学参数的方法. 以这些TPD谱图为基础, 分别采用传统TPD计算模型、最小二乘法以及一阶微分曲线法计算了苯、噻吩和正辛烷在NaY上的脱附活化能和动力学参数. 结果表明, 最小二乘法对在不同线性升温速率时的程序升温脱附活化能的计算结果是一致的.  相似文献   

7.
本文采用分子筛吸附苯或正已烷, 进行指数程序升温脱附。结果表明, 活化能与脱附最大速率所对应的温度(T_m)有线性关系, 即E_d=KT_m。对指数升温条件下得到的脱附图谱与各个脱附动力学参量之间的关系进行了数学分析, 并将分析结果与线性升温所得的结果相比较。各对应的动力学参数的数值基本相同。我们推导得到的指数升温基本方程与目前通用的线性升温基本方程~[2]相比较, 如果温度的测量精度相同则指数升温计算方法的精度比线性升温高(2T+△T)倍。实验还说明, 指数升温的曲线比线性升温容易控制。  相似文献   

8.
以单分散的聚甲基丙烯酸甲酯(PMMA)微球为胶体模板, 采用钛酸丁酯、水、乙醇、盐酸等配成的混合溶胶填充在微球间间隙, 经水解形成凝胶, 然后通过程序升温焙烧去掉单分散的PMMA微球, 可得有序TiO2大孔材料. 实验结果表明, 溶胶的配比为V(钛酸丁酯)∶V(水)∶V(乙醇)∶V(盐酸)=5∶2∶3∶1, 在空气中凝胶20 h. 去掉单分散的PMMA微球的程序升温控制的条件为1 ℃/min的升温速率升到250 ℃恒定3 h, 再以2 ℃/min的升温速率升到450 ℃恒定8 h, 最后以10 ℃/min的降温速率降到室温.  相似文献   

9.
在标准的交联SE-54毛细管上,准确地测量了20种农药的Kovats指数及温度系数,用以扩充Sadtler标准库。所测农药Kovats指数的温度系数在0.2~1.8指数单位/℃,显示出强极性和高活性,为克服Sadtler标准库对色谱柱和操作条件的苛刻要求,我们试用了保留值活数据库(简称LRD)方法.在程序升温条件下对农药定性。LRD用标准Kovats指数及其温度系数作为基础数据,替代标准样。在不同的程序升温条件下,对农药的实测与LRD计算保留值进行了比较。结果表明,对农药类特殊样品,保留时间的计算精度≤±1%,这证明在程序升温条件下,可用LRD方法对农药分析定性。  相似文献   

10.
毛细管气相色谱法对液化石油气组分的测定   总被引:1,自引:0,他引:1  
选用30 m×0.53 mm(i.d.) HP PLOT/Al2O3石英毛细管柱,程序升温和分流进样技术对液化石油气的18种C_1 ~C_5烃类组分进行分离.选择水浴加阀箱气化方式,并以80 ℃为气化温度优化了进样口温度等色谱参数.液化石油气各组分在一定浓度范围内其浓度与响应值有良好的线性关系,相关系数r为0.994 0 ~0.998 8.各组分实际样品的检出限为0.001% ~0.002%(摩尔分数).  相似文献   

11.
以色谱法的LES模型作为气相色谱分析过程的计算机仿真模拟与优化的理论基础,提出了把两次多阶程度升温实验保留时间作为基本数据进行模拟优化的方法,拓宽了模拟优化方法在复杂组分样品中的应用。软件编程采用了计算数学方法,提高了模拟优化的精度和速度,节省了分析样品的时间。  相似文献   

12.
A comprehensive GCxGC-TOFMS method was optimized for multiresidue analysis of pesticides using a combination of a non-polar (RTX-5MS, 10 m x 0.18 mm x 0.2 microm) and a polar capillary column (TR-50MS, 1 m x 0.1 mm x 0.1 microm), connected in series through a dual stage thermal modulator. The method resolved the co-elution problems as observed in full scan one-dimensional GC-MS analysis and allowed chromatographic separation of 51 pesticides within 24 min run time with library-searchable mass spectrometric confirmation. Four pesticides, viz. chlorpyrifos-methyl, vinclozoline, parathion-methyl and heptachlor could be baseline separated on GCxGC, which were otherwise closely eluting and interfering each other's detection in 1D GC-MS run. Similarly, it could be possible to separate myclobutanil, buprofezin, flusilazole and oxyfluorfen on GCxGC. Although in 1D GC-MS, these closely eluting compounds could be identified through deconvolution algorithm and 'peak-find' option of the Chromatof software but the spectral purity significantly improved on GCxGC analysis. Thorough optimization was accomplished for the oven temperature programming, ion source temperature and GCxGC parameters like modulation period, duration of hot pulses, modulation-offset temperature, acquisition rate, etc. to achieve best possible separation of the test compounds. The limit of detection significantly improved by 2-12 times on GCxGC-TOFMS against GC-TOFMS because of sharper and narrower peak shapes. The method was tested for grape matrix after preparing the samples using previously described method and recoveries of the entire test pesticides were within 70-110% at 10 ng/g level of fortification. GCxGC-TOFMS was found to be an excellent technique for library-based screening of pesticides with high accuracy and sensitivity.  相似文献   

13.
张小芹 《色谱》2001,19(6):575-576
 采用气相色谱法 ,以涂覆OV 10 1固定液的色谱柱测定环己酮、氨与双氧水反应产物中的环己酮和 1 1′ 过氧化双环己胺 (1 1′ PXA) ,并采用内标法进行定量分析。结果表明 :环己酮、1 1′ 过氧化双环己胺测定结果的相对标准偏差均小于 1 5 %,回收率分别为 96 38%~ 10 0 8%和 99 31%~ 10 3 1%。方法简便、灵敏、准确、重现性好 。  相似文献   

14.
Analysis of wine primary aroma compounds by stir bar sorptive extraction   总被引:2,自引:0,他引:2  
A. Zalacain  G.L. Alonso 《Talanta》2007,71(4):1610-1615
Due to the great importance of some primary aroma compounds on wine quality, these compounds which includes terpenes, C13-norisoprenoids and C6 compounds, have been analyzed by stir bar sorptive extraction (SBSE) followed by a thermal desorption-gas chromatography-mass spectrometry analysis. The stir bar sorptive extraction method was optimized in terms of temperature, time, pH and NaCl addition. The best SBSE sorption kinetics for the target analytes were obtained after submitting the solutions to 60 °C during 90 min. The addition of sodium chloride did not enhance the volatile extraction. The method proposed showed good linearity over the concentration range tested, with correlation coefficients higher than 0.98 for all the analytes. The reproducibility and repeatability of the method was estimated between 0.22 and 9.11%. The detection and quantification limits of all analytes were lower than their respective olfactory threshold values. The application of this SBSE method revealed that monovarietal white wines were clearly separated by two canonic discriminating functions when grape varieties were used as differentiating variable, the first of which explained 98.4% of the variance. The compounds which contributed most to the differentiation were limonene, linalool, nerolidol and 1-hexanol.  相似文献   

15.
This study describes a new optimization strategy for internally cooled solid-phase microextraction based on a multivariate approach. The coating temperature was changed in an extraction while manipulating the extraction times to improve the extraction of compounds with different volatilities. Polycyclic aromatic hydrocarbons (PAHs) and phthalic acid esters (PEs) and adipate were used as model compounds in this study. The optimization strategy was in two steps: (1) multivariate optimization of extraction time and initial coating temperature and (2) multivariate optimization of total extraction time and the time required to cool the coating to a lower temperature as determined in step 1. The observed analytical response in relation to the coating temperature was found to be dependent on the analyte volatility and size. The optimized extraction condition for PEs was 23 min extraction while maintaining the coating at 140°C, followed by 7 min of cooling the coating at 10°C. For the PAHs the coating temperature was maintained at 60°C for the first 20 min and at 5°C in the last 20 min of extraction. Comparisons have been made between the proposed optimized conditions with the conventional internally cooled fiber approach and the results thoroughly discussed. The proposed optimization strategy was found to be more effective for all the analytes, especially for the semi-volatiles, compared to the conventional method.  相似文献   

16.
A new humic acid stationary phase was prepared by immobilizing humic acid onto aminopropyl silica via an amide linkage formation and used, for the first time, for the separation and quantification of the tocopherol compounds in cold‐pressed oil samples under normal‐phase high‐performance liquid chromatography conditions. Parameters affecting the chromatographic separation such as mobile phase composition and flow rate were optimized. By evaluating the calculations of capacity factor, asymmetry factor, resolution, selectivity factor, and theoretical plate number, the best separation was obtained with isocratic elution of n‐hexane and isopropyl alcohol (99:1% v/v) at a flow rate of 1.0 mL/min. The effluent was monitored by a fluorescence detector set at excitation and emission wavelengths 295 and 330 nm, respectively. All compounds were separated in 20 min. The method was validated according to international guidelines and found to be linear in a wide concentration range, also the mean recovery of the compounds ranged from 97.9 to 99.2%, with a CV less than 2.7% in all cases. The results showed that the developed stationary phase is suitable for the separation and quantification of the tocopherol compounds in real oil samples.  相似文献   

17.
卡那霉素作为手性选择剂的毛细管电泳手性药物分离研究   总被引:3,自引:0,他引:3  
建立了一种以天然易得的卡那霉素为手性添加剂,用毛细管区带电泳法快速分离市售对乙肝有良好治疗效果的药物联苯双脂衍生物的方法,拓宽了毛细管电泳中手性选择剂的范围,通过实验研究了卡那霉素、甲醇 含量PH值,磷酸盐缓冲体系和硼硝缓冲体系对手性分离的影响,以及三种有机溶剂(甲醇、乙晴、异丙醇)添加剂对手性分离的影响,结果表明,在含有3%卡那霉素,30mol/L,硼砂缓冲体系(PH=8.0)添加30%异丙醇是最佳的分离条件。  相似文献   

18.
本文利用Gaussian 03程序,采用量子化学理论,在RHF/6-31G(d)水平上,对一元氯化镁化合物热分解反应机理进行了研究。在对现有4种水氯镁石脱水技术的反应物和产物几何构型进行能量梯度法全优化的同时,计算了不同温度下4种方法的主副反应路径的标准热力学参数(298.15~1000 K)。热力学计算结果表明:所有反应均为吸热反应,当压力为1.01×105 Pa、温度低于1000 K时,所有反应都不能自发进行;从热力学的角度分析,热分解更有利于以苯胺为助剂的复盐法的发生。  相似文献   

19.
This study proposes a new approach to the optimization of the extraction of the volatile fraction of plant matrices using the headspace solid-phase microextraction (HS-SPME) technique. The optimization focused on the extraction time and temperature using a CAR/DVB/PDMS 50/30 μm SPME fiber and 100mg of a mixture of plants as the sample in a 15-mL vial. The extraction time (10-60 min) and temperature (5-60 °C) were optimized by means of a central composite design. The chromatogram was divided into four groups of peaks based on the elution temperature to provide a better understanding of the influence of the extraction parameters on the extraction efficiency considering compounds with different volatilities/polarities. In view of the different optimum extraction time and temperature conditions obtained for each group, a new approach based on the use of two extraction temperatures in the same procedure is proposed. The optimum conditions were achieved by extracting for 30 min with a sample temperature of 60 °C followed by a further 15 min at 5 °C. The proposed method was compared with the optimized conventional method based on a single extraction temperature (45 min of extraction at 50 °C) by submitting five samples to both procedures. The proposed method led to better results in all cases, considering as the response both peak area and the number of identified peaks. The newly proposed optimization approach provided an excellent alternative procedure to extract analytes with quite different volatilities in the same procedure.  相似文献   

20.
The resolving power of a multi-capillary column (MCC) was evaluated using 14 mixtures of volatile organic compounds with known composition and complexity which was incremented stepwise up to 129 constituents. The number of constituents in these mixtures versus the number of components separated and detected with a flame ionization detector showed a proportional rise, with a decreasing slope, to 76 peaks after which a plateau was reached. This was improved 23.7% to 94 constituents, or 73% of all compounds in the mixture, after simplex optimization of carrier gas linear velocity, initial temperature and program rate. When the detection method was differential mobility spectrometry (DMS), additional selectivity was introduced through ion formation and separation. Fifty nine compounds were detected by DMS and 46 were separated by retention time; 13 were co-eluted and 7 of these were resolved by differential ion mobility (90% of all components ionized). A correlation of −0.412 between retention time for gas chromatography (GC) and differential mobility for DMS suggested a significant level of orthogonal character and the method of GC–DMS should not be seen as sequential only.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号