首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
提出了一种应用磁性颗粒和通用连接子扩增技术(Linker-PCR)的多位点单核苷酸多态性(SNP)分型方法. 该方法首先通过酶切将样本基因组DNA打断, 然后将通用连接子通过T4 DNA连接酶与各个酶切片段连接, 利用生物素标记的通用引物将样本进行全基因组扩增. 扩增后, 将生物素标记的Linker-PCR扩增产物固定到亲合素修饰的磁性颗粒表面, 通过与双色荧光标记的等位基因特异性探针杂交, 对待测位点进行分型. 利用该方法, 我们对10个样本MTHFR基因上的2个SNP位点进行了分型, 分型结果准确、正错配信号比大于3. 由于利用Linker-PCR技术来实现对靶序列的全基因组扩增, 该方法非常适用于大量样本的多基因多位点的SNP分型研究.  相似文献   

2.
一种基于磁性纳米粒子PCR的高通量SNP分型方法   总被引:1,自引:0,他引:1  
利用磁性纳米粒子PCR扩增(MNPs-PCR)和等位基因特异性双色荧光探针(Cy3, Cy5)杂交, 建立了一种单核苷酸多态性(SNP)分型的新方法. 应用该方法对9个样本MTHFR基因的C677T多态进行检测, 野生和突变型样本正错配信号比大于9.0, 杂合型正错配信号比接近1.0, 分型结果经测序验证. 此方法无须产物纯化、浓缩, 扫描分型结果快速、直观, 是一种操作简单、快速、高通量、高灵敏度的分型方法.  相似文献   

3.
金纳米颗粒介导不对称PCR:制备单链核酸的新方法   总被引:2,自引:0,他引:2  
单链核酸杂交技术是现代医学生物学等领域诊断与检测的重要手段.传统不对称PCR制备单链核酸的方法,需要严格控制引物和模板数量及反复摸索退火温度,操作复杂.发展了一种利用金纳米颗粒介导的不对称PCR快速制备单链核酸的新方法.浓度为0.1~0.5nmol/L金纳米颗粒可显著改善PCR扩增特异性,提高扩增效率.在不对称PCR扩增中,加入合适浓度的金纳米颗粒方便快捷得到单链核酸产物,不需要进行复杂的条件优化等操作步骤.通过快速制备地中海遗传病两个点突变CD17(A→T)和IVS-2-654(C→T)位点的单链DNA靶序列,证实该方法是一种简便、有效的获得单链核酸的方法,有望在单链核酸技术领域发挥重要作用.  相似文献   

4.
将荧光偏振与非对称基因扩增技术联用,建立了可用于检测全血XPD基因单核苷酸多态性的新方法。用不等量(1∶5)的XPD基因上、下游引物对含单核苷酸多态性位点的目的片段进行非对称扩增,再用两种单核苷酸多态性序列特异的荧光标记探针对扩增产物进行检测。由于扩增得到的单链片段能够与各自不同的荧光标记探针特异结合,使荧光标记分子的分子量增加,偏振值(FP)增高。通过检测增高的FP值,可确定目的片段单核苷酸多态性。采用本方法对98例全血的XPD基因第751位密码子进行了单核苷酸多态性分析,并与传统的荧光偏振检测方法进行了比较,取得满意结果。  相似文献   

5.
焦磷酸测序是目前基因多态性检测的主要方法之一,但是其前期的样本制备工作较为繁琐,限制了其在临床检测中的应用。为了简化焦磷酸测序的流程,本研究根据不对称PCR原理,改进了线性指数聚合酶链式反应(LATE-PCR)的引物设计方法,增加过量引物的长度和浓度,并结合全血直接扩增技术,建立了基于普通r Taq聚合酶和高p H缓冲液(Hp H Buffer)的全血改进LATE-PCR(Improved LATE-PCR,im LATE-PCR)方法。考察了方法的最优扩增体系、血液抗凝剂对其影响以及全血模板量。采用单管、一步法直接扩增出单链测序模板,成功地对24例临床血样的乙醇脱氢酶基因多态性进行了检测,检测结果可用于指导临床个体化用药。24例样本的基因型分别为ADH1B位点AA纯合6例、AG杂合14例、GG纯合4例;ADH1C位点GG纯合20例、AG杂合4例、AA纯合0例。  相似文献   

6.
为了缓解竞争杂交对分子信标检测的影响,将分子信标与不对称聚合酶链式反应(PCR)联用进行血清中乙型肝炎病毒(HBV)的检测。并采用更为直接的荧光方法,将不对称PCR扩增中的引物浓度比确定为5:1,该结果与电泳方法得到的结果有所不同。文中结合对称及不对称PCR过程中荧光强度的变化情况,对其原因进行了详细的探讨。分子信标与不对称PCR联用,可以专一地检测出血清中HBV的存在,与分子信标/对称PCR相比.其检测效果明显增强。  相似文献   

7.
利用近红外光谱(NIRS)结合支持向量机(SVM)模式识别原理建立了微卫星(短串联重复序列,STR)的分型方法。以D16S539基因座的10-10、10-11和11-11 3种不同基因型为例,研究了包含该多态性位点的脱氧核糖核酸(DNA)片段的聚合酶链反应(PCR)扩增条件和NIRS检测条件,建立了标准化扩增条件和检测条件,以此条件获得了基因分型的标准物及其标准NIRS。以标准光谱为识别变量,建立该3类基因型的SVM判别模型,有效地克服了光谱共线性,并对少样本数表现出良好的稳定性,模型预测率100%。该方法不需任何检测前处理,而只需一步PCR扩增和NIRS检测即可实现STR分型,具有简单、快速、低成本等优点。  相似文献   

8.
亚甲基四氢叶酸还原酶基因677C>T和1298A>C两个位点的多态性与临床常用抗肿瘤药物甲氨喋呤及氟尿嘧啶的作用密切相关,对这两个位点多态性的检测能指导临床合理用药。为进一步缩短检测时间,降低检测成本,本研究建立了基于全血直接PCR的焦测序检测方法,采用"HpH Buffer"直接扩增全血模板,仅需1μL全血样本即可对两个位点进行高效扩增。扩增产物经碱变性法制备单链模板后进行焦磷酸测序,经过条件优化,仅需5μL扩增产物和1μL微球即可完成高灵敏的焦测序反应。为验证方法的准确性,检测了12例临床样本,均能正确检测两个位点的基因多态性。本研究为临床基因多态性检测提供了一种操作简便,耗时短,成本低,准确度高的方法,本方法可用于指导甲氨喋呤和5-氟尿嘧啶的个体化用药。  相似文献   

9.
汪维鹏  倪坤仪  周国华 《分析化学》2006,34(10):1389-1394
以微流控芯片电泳为检测平台,建立了多重PCR扩增法同时测定多个单碱基多态性(SNP)位点的方法。先通过PCR扩增得一段含所有待测SNP位点的长片段;用限制性内切酶消化成短片段,再将酶切反应产物与脱氧核糖核酸适配器(DNAadapter)相连;以连接产物为模板,分成两管,分别用n条等位基因特异性引物和一条通用引物进行n重PCR扩增;最后用微流控芯片电泳法分离PCR扩增产物,根据两管扩增产物的芯片电泳图谱中扩增片段的大小判断SNP的类型。以细胞色素P4502D6(CYP2D6)基因中的5个SNP位点(100C>T、1661G>C、1758G>T、2470T>C和2850C>T)为检测对象,考察了各等位基因特异性引物之间的相互影响和扩增反应的特异性,采用微流控芯片电泳法成功测定了20名健康中国人的CYP2D6基因中5个SNP位点的基因多态性,与聚合酶链反应-限制性片段长度多态性法(PCR-RFLP)测定结果完全一致。  相似文献   

10.
建立了HSP70-2基因多态性的毛细管电泳-激光诱导荧光(CE-LIF)检测方法。采用试剂盒法提取人血清标本中全基因组DNA作为模板,选择特异引物进行PCR扩增反应,产物用Pst I限制性内切酶酶切;酶切产物用高灵敏度的SYBR Gold荧光染料标记后,用毛细管电泳-激光诱导荧光法检测。在优化的毛细管电泳-激光诱导荧光条件下,酶切产物在25 min内即可完成检测。GeneRular 100bp DNA ladder在同一天内连续测定6次,迁移时间和峰面积的RSD分别为1.8%~2.9%和2.8%~7.9%;连续6日测定迁移时间与峰面积的RSD分别为2.1%~4.3%和3.5%~9.3%。本研究共检测200份样品,其中G/G分型3份,A/G分型25份,A/A分型172份,检测结果与凝胶电泳结果一致。CE-LIF检测方法具有电泳时间短、试样消耗少、绿色环保等优点,能用于HSP70-2基因多态性的检测。  相似文献   

11.
Here we provide a method based on enzymatically catalyzed reactions to cleave and ligate DNA molecules coated with nanoparticles to fabricate multi-component structures. This is done by simultaneously digesting two solutions of nanoparticle coated DNA, one with iron oxide particles the other gold particles, which yields short DNA fragments with complementary single stranded overhangs. When added together and re-attached using ligase enzymes multi-component nanoparticle coated structures are formed providing a novel method to fabricate complicated nanoparticle arrangements from the bottom up. We evaluated the fabrication by characterizing the samples with gel electrophoresis and magnetic force microscopy (MFM). The electrophoresis provides proof that the coated DNA molecules were digested with restriction enzymes and ligated by the T4 ligase enzymes. MFM experiments allow us to visualize the multi-component strands and analyze the magnetic versus metallic segments.  相似文献   

12.
Multifunctional colloidal core-shell nanoparticles of magnetic nanocrystals (of iron oxide or FePt) or gold nanorods encapsulated in silica shells doped with the fluorescent dye, Tris(2,2′-bipyridyl)dichlororuthenium(II) hexahydrate (Rubpy) were synthesized. The as-prepared magnetic nanocrystals are initially hydrophobic and were coated with silica using a microemulsion approach, while the as-prepared gold nanorods are hydrophilic and were coated with silica using a Stöber type of process. Each approach yielded monodisperse nanoparticles with uniform fluorescent dye-doped silica shells. These colloidal heterostructures have the potential to be used as dual-purpose tags—exhibiting a fluorescent signal that could be combined with either dark-field optical contrast (in the case of the gold nanorods), or enhanced contrast in magnetic resonance images (in the case of magnetic nanocrystal cores). The optical and magnetic properties of the fluorescent silica-coated gold nanorods and magnetic nanocrystals are reported.  相似文献   

13.
We report a simple process to generate iron oxide coated gold nanorods. Gold nanorods, synthesized by our three-step seed mediated protocol, were coated with a layer of polymer, poly(sodium 4-styrenesulfonate). The negatively charged polymer on the nanorod surface electrostatically attracted a mixture of aqueous iron(II) and iron(III) ions. Base-mediated coprecipitation of iron salts was used to form uniform coatings of iron oxide nanoparticles onto the surface of gold nanorods. The magnetic properties were studied using a superconducting quantum interference device (SQUID) magnetometer, which indicated superparamagnetic behavior of the composites. These iron oxide coated gold nanorods were studied for macroscopic magnetic manipulation and were found to be weakly magnetic. For comparison, premade iron oxide nanoparticles, attached to gold nanorods by electrostatic interactions, were also studied. Although control over uniform coating of the nanorods was difficult to achieve, magnetic manipulation was improved in the latter case. The products of both synthetic methods were monitored by UV-vis spectroscopy, zeta potential measurements, and transmission electron microscopy. X-ray photoelectron spectroscopy was used to determine the oxidation state of iron in the gold nanorod-iron oxide composites, which is consistent with Fe2O3 rather than Fe3O4. The simple method of iron oxide coating is general and applicable to different nanoparticles, and it enables magnetic field-assisted ordering of assemblies of nanoparticles for different applications.  相似文献   

14.
Herein we combined the use of self-assembled monolayer (SAM) modified electrodes and gold coated magnetic nanoparticles (Au@MNPs) to modulate faradaic electrochemistry when nanoparticles are absorbed on and removed from, a passivated electrode using an external magnetic field. Substantial faradaic electrochemistry of potassium ferricyanide in solution is first prevented by modifying gold electrodes with 11-mercaptoundecanoic acid to form a passivating SAM. Restoration of the faradaic electrochemistry is then achieved by introducing Au@MNPs which are brought to the surface using an external magnetic field. The faradaic electrochemistry can again be suppressed by removing Au@MNPs from the SAM using another external magnetic field.  相似文献   

15.
金纳米粒子与聚吡咯纳米管的复合及其SERS效应研究   总被引:1,自引:0,他引:1  
通过柠檬酸盐与HAuCl4水溶液在微沸状态下反应制备的金纳米粒子因其特殊的表面与界面效应在光学、生物学和催化化学领域得到了广泛应用,而聚吡咯(PPy)具有环境稳定性好、电导率高且变化范围大、容易合成等优点,聚吡咯纳米管可用作导电材料、酶封装材料、抗静电材料,也可用于制备传感器、传动器、固体电解质电容器等。  相似文献   

16.
A general method for the generation of two-dimensional (2D) ordered silver nanoparticles (av 45 nm) ring array has been demonstrated via controllable self-assembly. The selective self-assembly is conducted on the edges of a gold coated polyelectrolyte film. This film is fabricated using the monolayer polystyrene (PS) spheres (av 600 nm) on a substrate as template, followed by depositing a positively charged polyelectrolyte and gold colloids (av 17 nm) via the layer-by-layer (LbL) self-assembly technique, and finally by eliminating the PS monolayer. This gold coated polyelectrolyte film has a regular pattern of sharp edges, and those edges are composed of abundant polyelectrolyte. This heterogeneous surface is easily prepared and universal for site-selective absorption of nanoparticles (silver nanoparticles in this paper, av 45 nm). This surface-guided self-assembly is powerful for fabricating micro/nanostructures on the edges of prepatterns. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) were used to characterize the products.  相似文献   

17.
This is the first report describing a new technology where hydrophobic nanoparticles adsorb onto much larger, hydrophilic mineral particle surfaces to facilitate attachment to air bubbles in flotation. The adsorption of 46 nm cationic polystyrene nanoparticles onto 43 μm diameter glass beads, a mineral model, facilitates virtually complete removal of the beads by flotation. As little as 5% coverage of the bead surfaces with nanoparticles promotes high flotation efficiencies. The maximum force required to pull a glass bead from an air bubble interface into the aqueous phase was measured by micromechanics. The pull-off force was 1.9 μN for glass beads coated with nanoparticles, compared to 0.0086 μN for clean beads. The pull-off forces were modeled using Scheludko's classical expression. We propose that the bubble/bead contact area may not be dry (completely dewetted). Instead, for hydrophobic nanoparticles sitting on a hydrophilic surface, it is possible that only the nanoparticles penetrate the air/water interface to form a three-phase contact line. We present a new model for pull-off forces for such a wet contact patch between the bead and the air bubble. Contact angle measurements of both nanoparticle coated glass and smooth films from dissolved nanoparticles were performed to support the modeling.  相似文献   

18.
We report an approach integrating the synthesis of protein‐imprinted nanogels (“plastic antibodies”) with a highly sensitive assay employing templates attached to magnetic carriers. The enzymes trypsin and pepsin were immobilized on amino‐functionalized solgel‐coated magnetic nanoparticles (magNPs). Lightly crosslinked fluorescently doped polyacrylamide nanogels were subsequently produced by high‐dilution polymerization of monomers in the presence of the magNPs. The nanogels were characterised by a novel competitive fluorescence assay employing identical protein‐conjugated nanoparticles as ligands to reversibly immobilize the corresponding nanogels. Both nanogels exhibited Kd<10 pM for their respective target protein and low cross‐reactivity with five reference proteins. This agrees with affinities reported for solid‐phase‐synthesized nanogels prepared using low‐surface‐area glass‐bead supports. This approach simplifies the development and production of plastic antibodies and offers direct access to a practical bioassay.  相似文献   

19.
The structure and magnetic properties of different types of templated wires are compared in this study. A long DNA molecule was used to guide the assembly of pyrrolidinone-capped Fe2O3 and CoFe2O3 particles as well as polylysine-coated gold nanoparticles. The resulting DNA-templated wires were stretched onto silicon oxide surfaces using a receding meniscus procedure. The coated, stretched, and surface-bound wires were characterized using atomic force microscopy (AFM), magnetic force microscopy (MFM), and spectroscopic methods. The results with respect to the wire properties were correlated with those determined from the bulk properties of the nanoparticles and with the properties of the bulk DNA. The MFM measurements allowed us to visualize the formation of domains along the wires as well as qualitatively compare the magnetic properties of each templated structure.  相似文献   

20.
Open-tubular columns for capillary electrochromatography (CEC) were formed by immobilising dodecanethiol gold nanoparticles on prederivatised 3-aminopropyl-trimethoxysilane (APTMS) or 3-mercaptopropyl-trimethoxysilane (MPTMS) fused-silica capillaries. The initial stage of this research involved the synthesis and characterisation of dodecanethiol gold nanoparticles, with tunnelling electron microscopy analysis of the dispersed phase of the gold nanoparticles dispersion in CHCl3, revealing spherical particles. The surface features of an Au-MPTMS coated capillary column were determined using scanning electron microscopy. The electroosmotic flow characteristics of Au-APTMS and Au-MPTMS capillary columns were then determined, by varying the pH and the voltage. The electrochromatographic properties of the gold nanoparticles CEC capillaries were investigated using a "reversed-phase" test mixture of thiourea, benzophenone and biphenyl and selected pyrethroid pesticides. Efficient separations of benzophenone and biphenyl solutes on Au-MPTMS and Au-APTMS capillary columns were obtained, as were linear plots of logarithm capacity factor versus % MeOH. A study of the reproducibility of retention for these solutes on Au-APTMS, Au-MPTMS and on a loosely coated capillary demonstrated the necessity of a coupling agent to prevent the gold nanoparticles from washing-off. These dodecanethiol gold capillary columns are easier to produce and operate than packed capillary columns. The research work confirms the use of gold nanoparticles as a novel phase for open-tubular CEC, demonstrating reproducible retention and characteristic reversed-phase behaviour.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号