首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
以三嵌段共聚物F127为模板剂,酚醛树脂为碳源,正硅酸乙酯为硅源,三组分共组装合成介孔碳-氧化硅纳米复合物,再经HF去除氧化硅,得到有序介孔碳(OMC).X射线衍射(XRD)、透射电子显微镜(TEM)、低温N2吸脱附(BET)等测试表明,所得样品具有高度有序的介孔结构,比表面积和孔容分别为1330m2·g-1和2.13cm3·g-1,平均孔径6.4nm.对其先氧化、后氯化、再胺化,得到不同胺基接枝量的胺化介孔碳(C-NH2(m),m为加入的乙二胺的质量(g)).傅里叶变换红外(FT-IR)光谱表征结果证实,胺基官能团成功接枝到有序介孔碳表面.TEM测试表明介孔碳的有序孔道结构得到了较好的保持.以有序介孔碳、胺化介孔碳作吸附剂对Cu(Ⅱ)、Cr(Ⅵ)进行选择性吸附研究.结果表明:功能化修饰前,样品对Cu(Ⅱ)、Cr(Ⅵ)饱和吸附量分别为213.33、241.55mg·g-1;修饰后饱和吸附量可分别达到495.05、68.21mg·g-1.功能化介孔碳表现了较强的选择性吸附Cu(Ⅱ)的能力.  相似文献   

2.
通过纳米浇铸法合成了有序介孔炭CMK-3,再通过浸渍法制备了Cu/CMK-3催化剂,并将其用于气相甲醇氧化羰基化反应。N2吸附-脱附测试、X射线衍射(XRD)以及透射电镜(TEM)的表征结果表明,Cu/CMK-3具有序介孔结构,活性Cu物种均匀分散于CMK-3的表面及孔道中,粒径为10~20 nm,远小于相同条件下制备的铜/活性炭(Cu/AC)催化剂。固定床反应器的活性评价结果显示450℃下制备的Cu/CMK-3催化活性最高,反应10 h内碳酸二甲酯(DMC)的时空收率(STY)达到286 mg·g^-1·h^-1,选择性为76%。长周期活性评价结果表明Cu/CMK-3稳定性较相同条件下制备的Cu/AC有大幅提高,50 h内DMC的STY降低了20%,75 h内降低了28%。  相似文献   

3.
通过纳米浇铸法合成了有序介孔炭CMK-3,再通过浸渍法制备了Cu/CMK-3催化剂,并将其用于气相甲醇氧化羰基化反应。N_2吸附-脱附测试、X射线衍射(XRD)以及透射电镜(TEM)的表征结果表明,Cu/CMK-3具有序介孔结构,活性Cu物种均匀分散于CMK-3的表面及孔道中,粒径为10~20 nm,远小于相同条件下制备的铜/活性炭(Cu/AC)催化剂。固定床反应器的活性评价结果显示450℃下制备的Cu/CMK-3催化活性最高,反应10 h内碳酸二甲酯(DMC)的时空收率(STY)达到286 mg·g~(-1)·h~(-1),选择性为76%。长周期活性评价结果表明Cu/CMK-3稳定性较相同条件下制备的Cu/AC有大幅提高,50 h内DMC的STY降低了20%,75 h内降低了28%。  相似文献   

4.
不同孔径的介孔碳分子筛对VB12的吸附性质研究   总被引:5,自引:1,他引:5  
摘要利用SBA-15为模板, 在不同温度下合成了孔径大小在3.7(CMK-3-100)和6-3 nm(CMK-3-150)之间的介孔碳, 以其作为吸附剂, 研究了它们在水溶液中对VB12的吸附作用. 结果表明, CMK-3-130与CMK-3-100和CMK-3-150相比, 表现出对VB12最大的吸附能力(吸附能力为412.5 mg/g), 这是因为它有比较高的有序结构和比较大的孔容.  相似文献   

5.
介绍一个集物理化学、分析化学和无机化学为一体的综合实验——介孔碳材料CMK-3的合成及其吸附性能研究。实验通过合成具有高比表面积的介孔碳材料CMK-3,运用扫描电子显微镜(SEM)、透射电子显微镜(TEM)和氮气吸附/脱附技术表征材料的形貌和多孔结构;考察了介孔碳材料CMK-3对水溶液中次甲基蓝染料分子的吸附性能。  相似文献   

6.
通过一种简易的方法在介孔碳CMK-3的孔道内负载氧化铜粒子制备Cu/CMK-3复合物,利用粉末X射线衍射、氮气吸附-脱附、透射电镜等手段对其进行表征.结果表明,氧化铜均匀地分散在CMK-3孔道中,CMK-3在负载氧化铜后仍有较大的比表面积.考察了载铜CMK-3对水中苯酚的吸附和低温干法催化氧化苯酚性能.吸附和循环使用结果表明,Cu/CMK-3对水中苯酚具有较大的吸附量和良好的催化氧化效率.热重-质谱(TG-MS)联用测试结果表明,吸附的苯酚在180℃左右开始被催化氧化为CO2和水,此时不会造成苯酚的脱附和介孔碳CMK-3的烧蚀.  相似文献   

7.
采用有序介孔碳CMK-3为载体负载咪唑类离子液体制得CMK-3-IL催化剂,用X射线衍射(XRD)、透射电子显微镜(TEM)、N2吸附、热重分析和元素分析等手段表征了催化剂样品,并考察了CMK-3-IL催化剂催化CO2与环氧丙烷合成碳酸丙烯酯的反应性能。结果表明,离子液体被成功的负载到CMK-3载体上,CMK-3负载离子液体后孔道结构没有被破坏,但孔体积、孔径和比表面积均有所下降。催化实验表明,在120℃、2 MPa的条件下反应6 h,环氧丙烷转化率达到64%,碳酸丙烯酯选择性高达99%。  相似文献   

8.
棒状有序纳米介孔二氧化硅的合成   总被引:1,自引:0,他引:1  
以十六烷基氯化吡啶为模板剂,甲酰胺为共溶剂,在室温酸性条件下合成了棒状有序纳米介孔二氧化硅,并用扫描电镜(SEM)、小角X射线衍射(SXRD)和N2气体吸附仪对其进行了表征。结果表明,棒状产物形貌规整,形态均一,长度约30~50μm,直径约5μm,具有MCM41的有序六方孔道结构;煅烧后的样品显示典型的Ⅳ型吸附等温线和H1型滞后环,孔径分布很窄,BJH最可几孔径为2.15nm,BET表面积高达1335m2·g-1。  相似文献   

9.
骨架掺杂La/SBA-15介孔分子筛的合成与表征   总被引:1,自引:0,他引:1  
以三嵌段共聚物P123为模板剂,正硅酸乙酯作为硅源,利用水热法,于80℃晶化合成了骨架掺杂La/SBA-15介孔分子筛,其结构经UV-Via,XRD,FT-IR,TEM和N2等温吸附-脱附法表征.结果表明,La离子直接进入了SBA-15分子筛的骨架;La/SBA-15分子筛具有规则的六方孔道结构,较高的比表面积(566.5 m2·g-1)和孔容(0.50 cm3·g-1),孔半径主要集中在1.70 nm.  相似文献   

10.
《电化学》2016,(4)
本文利用在反应过程中同时添加均相沉淀剂六次甲基四胺和形貌导向剂十六烷基三甲基溴化铵,结合水热反应的方法一步合成了镍钴氢氧化物.随着六次甲基四胺的水解,层状镍钴氢氧化物可以被合成而且避免了额外碱源的使用.同时,由于反应过程中十六烷基三甲基溴化铵参与的孔径调节,合成出来的镍钴氢氧化物具有可控的介孔尺寸13.4 nm以及较大的比表面积93.6 m2·g-1.X射线衍射图谱表明合成出来的镍钴氢氧化物构型是α-Ni(OH)2-β-Co(OH)2.扫描电镜表明合成出来的镍钴氢氧化物具有层状的结构.正是因为层状介孔结构的存在,合成出来的镍钴氢氧化物在1 A·g-1电流密度下,比电容可以高达1902 F·g-1.即使电流密度提高到8 A·g-1,镍钴氢氧化物的比电容仍然可以保持在1250 F·g-1.  相似文献   

11.
以三嵌段共聚物F127为模板剂, 酚醛树脂为碳源, 正硅酸乙酯为硅源, 三组分共组装合成介孔碳?氧化 硅纳米复合物, 再经HF去除氧化硅, 得到有序介孔碳(OMC). X射线衍射(XRD)、透射电子显微镜(TEM)、低温 N2吸脱附(BET)等测试表明, 所得样品具有高度有序的介孔结构, 比表面积和孔容分别为1330 m2·g-1和2.13 cm3·g-1, 平均孔径6.4 nm. 对其先氧化、后氯化、再胺化, 得到不同胺基接枝量的胺化介孔碳(C-NH2(m), m为加入的乙二胺的质量(g)). 傅里叶变换红外(FT-IR)光谱表征结果证实, 胺基官能团成功接枝到有序介孔碳表面.TEM测试表明介孔碳的有序孔道结构得到了较好的保持. 以有序介孔碳、胺化介孔碳作吸附剂对Cu(II)、Cr(VI)进行选择性吸附研究. 结果表明: 功能化修饰前, 样品对Cu(II)、Cr(VI)饱和吸附量分别为213.33、241.55 mg·g-1; 修饰后饱和吸附量可分别达到495.05、68.21 mg·g-1. 功能化介孔碳表现了较强的选择性吸附Cu(II)的能力.  相似文献   

12.
Ordered mesoporous carbons CMK-3, CMK-1 coated with poly(methyl methacrylate)(PMMA)(CMK-3- PMMA and CMK-1-PMMA) and pristine mesoporous carbons CMK-3, CMK-1 were employed to adsorb vitamin B12(VB12) from water solution. Adsorption isotherm and kinetics of adsorption were investigated via batch experi- ments. It was found that the adsorption capacity of VB12 at 30, 40 and 50 °C can reach 688.2, 572.4 and 428.7 mg/g, respectively. The adsorption isotherm can be described by Langmuir model. The pseudo first- and second-order kinetic models were employed to fit the dynamic adsorption. It was found that the dynamic adsorption follows the pseudo second-order model. The thermodynamic equilibrium coefficients obtained at different temperatures were used to evaluate the thermodynamic constants ΔG0, ΔH0 and ΔS0. The negative value of Gibbs free energy, ΔG0 indicates that the adsorption occurred via a spontaneous process. The increase in the value of –ΔG0 with increasing temperature indicates that higher temperatures were favourable to the sorption process. The enthalpy values of ΔH040 kJ/mol(66.36 kJ/mol and 56.43 kJ/mol) for CMK-3-PMMA and CMK-1-PMMA confirm that chemisorption were involved in the adsorption process. This is consistent with the IR spectra and is another evidence for the formation of hydrogen bond between PMMA in the pore of CMK-3 and VB12.  相似文献   

13.
本文采用双脉冲一步共沉积法制备了ZSM-5/聚苯胺/聚苯乙烯磺酸钠(ZSM-5/PANI/PSS)电活性膜,通过FT-IR、XRD和SEM对ZSM-5/PANI/PSS电活性膜进行了表征. 由水热法合成纳米级ZSM-5颗粒,经超声处理将ZSM-5分散,有利于合成均匀的ZSM-5/PANI/PSS电活性膜. 实验结果表明该电活性膜对Pb2+具有优良的选择分离性能,在10 mg﹒L-1的Pb2+溶液中电控离子交换法对Pb2+的去除率是传统离子交换法的2.3倍,且前者的平衡吸附量是后者的2.5倍. 吸附过程满足Langmuir等温吸附方程,ZSM-5/PANI/PSS电活性膜对Pb2+的交换量高达235 mg·g-1. 吸附过程为准一级动力学吸附,电控离子交换过程的准一级吸附速率常数(0.0227 g·mg-1·min-1)明显高于传统离子交换(0.0117 g·mg-1·min-1). 该电活性膜在电控离子交换处理废水领域具有很好的应用前景.  相似文献   

14.
使用盐酸对吸附剂活性炭纤维(activated carbon fiber,ACF)进行改性,通过SEM、BET和FTIR对改性前后的ACF形貌及结构进行系统表征发现,改性后ACF较改性前表面杂质减少且沟壑更加明显,比表面积提高22%,微孔体积增加5%,含氧官能团(C-O和C=O)明显增多. 以水中重金属离子(Zn(II)及Cr(VI))和抗生素磺胺甲恶唑(Sulfamethoxazole,SMX)为目标污染物,研究改性后ACF对目标污染物的吸附(静吸附和电吸附)性能,考察了浓度、pH、外加电压对吸附的影响. 结果表明,ACF用量为5 g,电压为1.2 V,Zn(II)、Cr(VI)及SMX浓度均为10 mg·L-1,Zn(II)溶液pH为5时,ACF吸附水中Zn(II)的最大吸附量为9.25 mg·g-1,是静吸附条件的2.15倍;Cr(VI)溶液pH为4时,ACF吸附Cr(VI)的最大吸附量为8.86 mg·g-1,是静吸附条件的1.96倍;SMX溶液pH为6时,ACF吸附SMX的最大吸附量为8.32 mg·g-1,是静吸附条件的1.84倍. ACF吸附Zn(II)、Cr(VI)及SMX的动力学曲线均符合准二级动力学模型,吸附过程为化学吸附. Freundlich等温模型能更好地描述ACF对Zn(II)、Cr(VI)及SMX的吸附特性,其吸附形式为多分子层吸附. ACF通过电极反接方式进行循环再生,脱附速率快且脱附效果明显,经4次循环再生后,ACF对Zn(II)、Cr(VI)及SMX的去除率均在90%以上.  相似文献   

15.
通过熔融扩散法合成了一系列不同含硫量的有序介孔碳(CMK-3)/硫复合材料(CxSy). 采用X射线衍射(XRD)、拉曼光谱(Raman)、比表面积测定仪(BET)、扫描电镜(SEM)、透射电镜(TEM)分析、表征和观察样品. 将复合材料组装成钠硫电池,室温下测试电化学性能. 循环伏安(CV)曲线结果表明,室温钠硫电池在1.61 V处有一个还原峰,对应于Na2Sx(x = 2 ~ 5)的形成;在1.82 V和1.95 V分别有一个氧化峰,对应于Na2Sx(x = 2 ~ 5)的分解. 50 wt%硫含量(C1S1)电极0.05C(1C=558 mA·g-1)倍率首周放电容量500 mAh·g-1,50周期循环比容量为305.6 mAh·g-1. 交流阻抗数据拟合计算其表观活化能为21.83 kJ·mol-1. 本研究可为室温钠硫电池多孔电极材料的研究提供一定的指导作用.  相似文献   

16.
采用分子模拟与吸附理论研究了天然气成分在有序介孔碳材料CMK-3上的吸附和分离.巨正则系综蒙特卡罗(GCMC)模拟表明,CH4和CO2气体的较优存储条件分别为208 K、4 MPa和298 K、6 MPa,其最大超额吸附量分别为10.07和14.85 mmol· g-1.基于双位Langmuir-Freundlich (DSLF)模型,使用理想吸附溶液理论(IAST)预测了不同二元混合物在CMK-3中的分离行为,发现吸附选择性Sco2/CH4与ScH4/N2比较接近,在298 K和4 MPa下约等于3,而N2-CO2体系中的CO2吸附选择性较高,可达到7.5,说明CMK-3是一种适合吸附和分离天然气组分的碳材料.  相似文献   

17.
以头发和蔗糖为原料, 通过水热碳化和KOH活化两步法制备了氮硫双掺杂微孔炭材料. 利用扫描电子显微镜, 透射电子显微镜, 氮气吸脱附, X射线光电子能谱, 电子能谱和傅里叶交换红外光谱等手段系统表征了所制备活性炭材料的微观形貌, 孔隙结构和表面化学性质. 并在6 mol·L-1 KOH溶液中研究了所制备活性炭材料的电容性能. 氮气吸脱附测试表明, 所制备活性炭材料的比表面积最高可达1849.4 m2·g-1, 孔道以微孔为主. 所制备活性炭材料氮元素含量为1.6%-2.5% (原子分数(x))), 硫元素含量为0.2%-0.5% (x). 由于N、O、S官能团的协同作用, 所制备碳材料表现出明显的赝电容. 活性炭材料的比电容值最高可达200 F·g-1, 对应的能量密度为6.9 Wh·kg-1. 功率密度达到10000 W·kg-1时, 能量密度仍达到4.1 Wh·kg-1. 本文的工作表明以生物质为原料可以方便制备氮硫双掺杂活性炭电极材料.  相似文献   

18.
功能化石墨烯/活性炭复合电极及不对称电容器脱盐   总被引:1,自引:0,他引:1  
以3-氨丙基三乙氧基硅烷(AMPTS)修饰氧化石墨(GO)还原合成氨基功能化石墨烯(GP-NH2).傅里叶变换红外(FTIR)光谱和X射线能谱(EDX)分析证明了氨基基团的成功接枝.以GP-NH2为添加剂,制备胺化石墨烯/活性炭(GP-NH2/AC)复合电极,并以GP-NH2/AC为正极,AC电极为对电极,组装不对称电容器(AC||GPNH2/AC)用于电容脱盐.实验表明,AC||GP-NH2/AC单循环脱盐量为7.63 mg·g-1,电流效率达77.6%.利用磺酸重氮盐接枝石墨烯制备磺化石墨烯(GP-SO3H)及磺化石墨烯/活性炭(GP-SO3H/AC)复合电极.并以GPSO3H/AC为负极,GP-NH2/AC为正极,组装不对称电容器(GP-SO3H/AC||GP-NH2/AC)用于电容脱盐,其平均脱盐速率可达0.99 mg·g-1·min-1,比纯AC电极提高了接近5倍.充放电速率提高了30%;而且由于正、负极表面固有电荷的存在,大大降低了反离子效应,电流效率由40%(纯AC||AC对称电容器)提高到92.8%.表明电极内功能化导电石墨烯的存在既提高了导电性,又兼具离子选择性的作用,从而明显改善电极的脱盐性能.  相似文献   

19.
采用恒电流法制备了具有可快速充放电性能的对甲基苯磺酸根(TOS-)掺杂聚吡咯/功能化单壁碳纳米管(PPy-TOS/F-SWNTs)复合材料,扫描电镜(SEM)结果表明该复合材料呈纳米棒状构成的多孔结构,棒径约为70nm;比表面积(BET)测试分析表明该复合材料有着较高的比表面积(12.64m2.g-1)和大的介孔孔隙率(20-40nm).循环伏安(CV)、电化学阻抗谱(EIS)和恒电流充放电(GC)电化学分析表明该材料具有优异的快速充放电性能,在800mV的电位窗和2.5A.g-1(功率密度为2kW.kg-1)的电流密度下该材料具有211F.g-1的比容量(能量密度为18.7Wh.kg-1),而当充放电电流高达80A.g-1(功率密度为60kW.kg-1)时比容量仍可达141.8F.g-1(能量密度为12.6Wh.kg-1),同时该材料还表现出优异的稳定性,在10A.g-1大电流下经历10000圈循环后容量仍保持95.2%.  相似文献   

20.
以豌豆荚为碳源、ZnCl2或KOH为活化剂制备了活性炭, 并用作双电层电容器的电极材料. 采用比表面及孔隙度分析仪表征了豌豆荚基活性炭的孔结构. 通过KOH或ZnCl2活化后, 活性炭比表面积从1.69 m2·g-1增大到2237或621 m2·g-1. 采用循环伏安法和恒流充放电测试技术表征了豌豆荚基活性炭的电化学特性. 结果表明: 在6 mol·L-1 KOH溶液中经KOH活化处理的活性炭的质量比电容高达297.5 F·g-1, 并具有良好的充放电稳定性, 在5 A·g-1的高电流密度下循环充放电500次后, 质量比电容仅衰减8.6%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号