首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
PLGA/明胶共混体系的静电纺丝研究   总被引:3,自引:1,他引:2  
采用静电纺丝技术制备了聚乳酸乙醇酸(PLGA)/明胶(Gt)的复合超细纤维, 考察了溶液浓度、电压及流速对纤维形貌的影响. 研究了不同明胶比例的纤维膜的微观形貌和干湿态的力学性能. 结果表明, 在溶液浓度0.12 g/mL, 电压7.5 kV, 流速0.8 mL/h条件下, 所得PLGA/Gt复合纤维直径较小, 粗细较均匀且缺陷少. 含有明胶的复合纤维直径远小于PLGA单纺纤维直径, 明胶的加入降低了膜的拉伸强度和断裂伸长率, 提高了膜的亲水性. 经PBS浸泡后, 复合膜的弹性得到加强. 明胶质量分数为5%和10%时, 纤维直径分布较窄, 当明胶的质量分数增加至15%时, 纤维的直径分布变宽.  相似文献   

2.
采用静电纺丝的方法制备了不同质量分数的CUR-CAP/PLGA复合静电纺丝纤维膜,并通过扫描电子显微镜、红外光谱、单晶X射线衍射进行表征,并用四唑盐MTT比色法测定其对成纤维细胞增殖的影响.表征结果表明:所合成的复合静电纺丝纤维膜的直径具有纳米结构,复合薄膜中,3种物质很好的混合在一起,没有发生化学键的结合.细胞实验检测结果显示,CUR-CAP/PLGA复合膜有助于细胞在其表面的生长及增殖,当姜黄素的质量分数为3%、氯霉素的质量分数为1%时效果最佳.  相似文献   

3.
利用静电纺丝技术在无纺布上制备PET纳米纤维膜, 并用交联壳聚糖对其进行改性得到壳聚糖改性纳米纤维复合膜. 以间苯二胺(MPD)和均苯三甲酰氯(TMC)为单体, 采用界面聚合法在壳聚糖改性纳米纤维复合膜的表面制备聚酰胺分离层, 得到新型静电纺丝纳米纤维基复合反渗透膜. 新型复合反渗透膜具有典型的聚酰胺复合反渗透膜的表面脊-谷结构. 从膜的表面形貌、 亲水性、 分离性能等3个方面对水相MPD溶液中阴离子表面活性剂十二烷基苯磺酸钠(SDBS)的含量对膜结构和性能的影响进行了系统研究. 结果表明, SDBS的含量对膜形态结构的均匀性和亲水性有一定影响, 且随着SDBS含量的增加, 膜的脱盐率先增大后减小, 而通量小幅度上升后, 先减小后增大, 呈现规律性变化.  相似文献   

4.
利用静电纺丝技术制备了一种具有抗菌性能的氧化锌(ZnO)/聚乳酸(PLA)/聚己内酯(PCL)载药微纳米纤维膜,并通过扫描电子显微镜(SEM)、X射线衍射(XRD)和傅里叶变换红外光谱(FTIR)分别对复合膜的表面形态、元素组成和化学结构进行表征。通过抗菌实验评价了复合膜的抗菌性能,用紫外分光光度计测试复合膜在体外的药物释放行为。结果显示,以物理共混的方式将ZnO和氢溴酸高乌甲素(LAH)成功载入复合微纳米纤维;与PLA/PCL复合微纳米纤维膜相比,ZnO/PLA/PCL复合微纳米纤维膜表现出更好的抗菌效率。当ZnO含量为10%(wt)时,复合微纳米纤维膜具有最佳的抗菌性能;药物释放性能结果表明,ZnO/PLA/PCL复合微纳米纤维膜具有良好的药物缓释性能。  相似文献   

5.
静电纺丝法制备PLLA/g-HNTs复合纳米纤维膜及其性能研究   总被引:1,自引:0,他引:1  
以辛酸亚锡为催化剂,利用HNTs表面的羟基引发L-LA开环聚合,合成了表面接枝聚(L-乳酸)(PLLA)链段的埃洛石纳米管(g-HNTs),通过红外、热失重和透射电镜对改性前后HNTs的组成与形貌进行了观察;然后采用静电纺丝技术制备了PLLA纳米纤维膜以及不同组成的PLLA/HNTs和PLLA/g-HNTs复合纳米纤维膜,探讨了纺丝条件对纳米纤维膜形貌的影响,并对复合膜的组成、形貌、力学性能和细胞相容性进行了研究.结果表明,当HNTs与L-LA的摩尔投料比为1∶10时,g-HNTs表面PLLA链段的接枝率为14.22%,HNTs纳米管的形态在接枝后变化不大,易于在无水乙醇中分散.电压强度和进样速率对纤维膜的形貌有一定影响,当电压强度为15 kV、进样速率为1 mL/h时,电纺纤维的直径较为均匀.复合纤维膜中g-HNTs在基体PLLA中的分散性以及与基体的界面相容性要优于相应的HNTs,当g-HNTs含量高达40%时,复合纳米纤维膜中的纤维形态仍然保持较好,可以得到连续、粗细较均匀的纤维;随着HNTs和g-HNTs含量增加,复合纳米纤维膜的拉伸强度和模量先增大后下降,当HNTs和g-HNTs的含量为5%时,两种复合纳米纤维膜的拉伸强度和模量均达到最大值,但PLLA/g-HNTs组复合纳米纤维膜的拉伸强度始终大于相应的PLLA/HNTs组.体外3T3细胞培养结果显示,PLLA/g-HNTs复合纳米纤维膜具有良好的细胞相容性,且优于相应的PLLA和PLLA/HNTs纳米纤维膜.  相似文献   

6.
采用硬脂酸对β-磷酸三钙(β-TCP)进行表面改性,并研究了β-TCP与硬脂酸的界面作用,通过透射电子显微镜(TEM)、热重分析仪(TGA)以及X光电子能谱(XPS)对改性前后β-TCP的形貌、热失重和表面基团进行表征;采用静电纺丝法制备不同质量配比的β-TCP/PLLA和改性β-TCP/PLLA复合纳米纤维膜,用扫描电镜(SEM)观察复合膜的形貌,并研究其力学性能。结果表明,硬脂酸包覆在β-TCP表面,改性后的β-TCP具有一定疏水性,硬脂酸的H+可与β-TCP中PO3-4的1个O发生质子化反应形成—OH;硬脂酸改性减轻了β-TCP微粒的团聚,可以得到连续均匀的纤维,改性后的β-TCP/PLLA复合纳米纤维膜的力学性能较改性前有明显提高。  相似文献   

7.
以聚己内酯和明胶为原料,通过静电纺丝制得孔隙率高、细胞分散性好、机械性能佳的三维细胞支架;扫描电镜及共聚焦显微镜表征U87细胞在该三维支架内培养14天后的生长情况,结果表明U87细胞不仅能够在支架表面黏附增殖,而且能迁移进入静电纺丝膜内部生长,形成良好的三维细胞体系.游离阿霉素(DOX)对二维表面和三维静电纺丝膜中U87细胞的细胞毒性结果表明,相对于二维细胞体系而言,三维细胞体系对药物的敏感性能降低.进一步比较了二维与三维细胞对负载于聚乙二醇-b-聚己内酯(PEG-b-PCL)胶束中DOX的响应,三维细胞体系的药物敏感性低于二维体系.  相似文献   

8.
通过聚乳酸(PLA)和氨基丙基三乙氧基硅烷(KH550)混合进行静电纺丝制备氨基官能化聚乳酸纳米纤维. 采用滴定法测定了纤维表面氨基含量, 证明当KH550的添加量为3%~13%(质量分数)时, 有19%~26%的氨基出现在纤维的表面. 利用场发射扫描电子显微镜、 差示扫描量热(DSC)仪、 接触角测试仪和电子拉伸机对纤维形貌、 PLA的玻璃化转变温度和熔点以及纤维膜的亲水性和力学性能进行了表征. 结果表明, KH550的加入可以在电纺纤维表面引入氨基, 同时使纤维直径变细, 使PLA的玻璃化转变温度上升, 熔点下降, 电纺纤维膜的亲水性略有增加, 力学性能有所下降. 通过吸附将金纳米粒子负载到氨基官能化聚乳酸电纺纤维膜上, 得到负载型催化剂, 对硼氢化钠还原对硝基苯酚的反应具有良好的催化活性和重复使用性.  相似文献   

9.
目前,将天然高分子蛋白和聚合物共混利用静电纺丝法制作各种组织工程支架材料倍受关注。基于这种研究背景,在本文中利用静电纺丝技术,制备了丝素(SF)/胶原(COL)/聚左旋乳酸(PLLA)和SF/COL/聚左旋乳酸-己内酯(PLCL)两种共混复合纤维膜,通过扫描电镜(SEM)对纤维形态结构分析,发现复合纤维形貌良好,直径较为均一。同时改变纺丝液中高分子蛋白的比例,复合纤维的直径也随之减小。此外,对复合纤维进行了力学性能测试,发现随着聚合物含量的增加,复合纤维膜的力学性能得以改善,SF/COL/PLCL组复合纤维的拉伸性能明显优于SF/COL/PLLA组。  相似文献   

10.
为了提高海藻酸钠(SA)纤维的断裂强度和断裂伸长率, 以丙烯酸(AA)为化学交联组分, SA为离子交联组分, 聚乙烯醇(PVA)为微晶交联组分, 采用湿法纺丝和冻融循环方法制备含有PVA微晶交联点和海藻酸钠/聚丙烯酸(SA/PAA)双网络结构的海藻酸钠/聚丙烯酸/聚乙烯醇(SA/PAA/PVA)复合纤维. 通过流变性能、 力学性能、 红外光谱、 X射线衍射仪(XRD)和扫描电子显微镜(SEM)测试研究了交联剂N,N-亚甲基双丙烯酰胺(MBA)含量和PVA微晶交联对SA/PAA/PVA纺丝原液和复合纤维的结构与性能的影响. 结果表明, 当MBA质量分数为0.5%时, 纺丝原液的损耗模量(G″)最小, 可纺性最好, 复合纤维的断裂强度达到2.83 cN/dtex, 断裂伸长率达到9.38%, 比再生SA纤维分别提高了15.98%和38.96%; PVA冷冻之后形成微晶交联点并且PAA和PVA已经复合到体系中; PAA和PVA的加入提高了复合纤维的结晶度; 复合纤维的表面形貌趋于光滑和规整, 纤维断面更加致密.  相似文献   

11.
The mechanical strength of polymer scaffold is closely related to its crystallinity. In this work, cellulose nanocrystals (CNC) were incorporated into poly-l-lactide (PLLA) scaffold which was fabricated by selective laser sintering, aiming to improve the mechanical properties. CNC possesses numerous hydroxyl groups which might form hydrogen bond with PLLA molecular chains. The hydrogen bond induces the ordered arrangement of PLLA chain by using CNC as heterogeneous nucleating agent, thereby increasing crystallization rate and crystallinity. Results showed that PLLA scaffolds with 3 wt% CNC resulted in 191%, 351%, 34%, 83.5%, 56% increase in compressive strength, compressive modulus, tensile strength, tensile modulus and Vickers hardness, respectively. Encouragingly, with the incorporation of hydrophilic CNC, the PLLA/CNC scaffolds showed not only better hydrophilicity, but also faster degradation than PLLA. In vitro cell culture studies proved that the PLLA/CNC scaffolds were biocompatible and capable of supporting cell adhesion, proliferation and differentiation. The above results indicated that the PLLA/CNC scaffolds may therefore be a potential replacement in bone repair.  相似文献   

12.
Porous nano-hydroxyapatite/polycaprolactone (nHA/PCL) scaffolds with different composition ratios of nHA/PCL were fabricated via a melt-molding/porogen leaching technique. All scaffolds were characterized before and after degradation in vitro for six months. The original scaffolds had high porosity at around 70% and showed decreasing compressive modulus (from 24.48 to 2.69 MPa for hydrated scaffolds) with the introduction of nHA. It was noted that the scaffolds could retain relatively stable architecture and mechanical properties for at least six months, although some slight changes happened with the nHA/PCL scaffolds in the mass, the nHA content, the PCL molecular weight and the crystallinity. Moreover, during the 7 days culture of bone marrow stromal cells (BMSCs) on scaffolds, the cell adhesion and proliferation of BMSCs were presented well on both the surface and the cross-section of the scaffolds. All of these results suggested the nHA/PCL scaffolds to be promising in bone tissue engineering.  相似文献   

13.
A combination of bioceramics and nanofibrous scaffolds holds promising potential for inducing of mineralization in connective tissues. The aim of the present study was to investigate the attachment, proliferation and odontogenic differentiation of dental pulp stem cells (DPSC) on poly(l ‐lactide) (PLLA) nanofibers coated with mineral trioxide aggregate (MTA). Polymeric scaffolds were fabricated via the electrospinning method and their surface was coated with MTA. DPSC were isolated from dental pulp and their biological behavior was evaluated on scaffolds and the control group using MTT assay. Alkaline phosphatase (ALP) activity, biomineralization and the expression of odontogenic genes were analyzed during odontogenic differentiation. Isolated DPSC showed spindle‐shaped morphology with multi‐lineage differentiation potential and were positive for CD73, CD90 and CD105. MTA‐coated PLLA (PLLA/MTA) exhibited nanofibrous structure with average fiber diameter of 756 ± 157 nm and interconnected pores and also suitable mechanical properties. Similar to MTA, these scaffolds were shown to be biocompatible and to support the attachment and proliferation of DPSC. ALP activity transiently peaked on day 14 and was significantly higher in PLLA/MTA scaffolds than in the control groups. In addition, increasing biomineralization was observed in all groups with a higher amount in PLLA/MTA. Odontogenic‐related genes, DSPP and collagen type I showed a higher expression in PLLA/MTA on days 21 and 14, respectively. Taken together, MTA/PLLA electrospun nanofibers enhanced the odontogenic differentiation of DPSC and showed the desired characteristics of a pulp capping material.  相似文献   

14.
In the present work, RGDS (Arg-Gly-Asp-Ser) was immobilized on PLLA scaffolds with plasma treatment. The amount of immobilization, determined by HPLC, was confirmed to be in the effective order. Results from the culture of rat osteosarcoma (ROS), osteoblastic-like cells, demonstrate that the immobilization of RGDS could effectively enhance the attachment of ROS cells on PLLA and increase the cell density in PLLA scaffolds. In addition, experiments of in vitro mineralization indicate that there were more cells and mineralization focci in the RGDS-immobilized scaffolds, suggesting a tendency to form bone-like tissues, compared with the unmodified PLLA scaffold. On the other hand, the PLLA scaffolds immobilized with RGES (Arg-Gly-Glu-Ser) were much less effective in promotion of ROS attachment, suggesting that the enhancement on cell attachment was mainly due to the recognition of RGDS by the adhesion receptors on the cell membrane. The results presented in this work demonstrate that RGDS could be successfully immobilized on PLLA scaffolds with plasma treatment and such modification can make PLLA scaffolds more suitable for culture of osteoblast-like cells and for generation of bone-like tissues.  相似文献   

15.
《先进技术聚合物》2018,29(1):451-462
Scaffold, an essential element of tissue engineering, should provide proper physical and chemical properties and evolve suitable cell behavior for tissue regeneration. Polycaprolactone/Gelatin (PCL/Gel)‐based nanocomposite scaffolds containing hydroxyapatite nanoparticles (nHA) and vitamin D3 (Vit D3) were fabricated using the electrospinning method. Structural and mechanical properties of the scaffold were determined by scanning electron microscopy (SEM) and tensile measurement. In this study, smooth and bead‐free morphology with a uniform fiber diameter and optimal porosity level with appropriate pore size was observed for PCL/Gel/nHA nanocomposite scaffold. The results indicated that adding nHA to PCL/Gel caused an increase of the mechanical properties of scaffold. In addition, chemical interactions between PCL, gelatin, and nHA molecules were shown with XRD and FT‐IR in the composite scaffolds. MG‐63 cell line has been cultured on the fabricated composite scaffolds; the results of viability and adhesion of cells on the scaffolds have been confirmed using MTT and SEM analysis methods. Here in this study, the culture of the osteoblast cells on the scaffolds showed that the addition of Vit D3 to PCL/Gel/nHA scaffold caused further attachment and proliferation of the cells. Moreover, DAPI staining results showed that the presence and viability of the cells were greater in PCL/Gel/nHA/Vit D3 scaffold than in PCL/Gel/nHA and PCL/Gel scaffolds. The results also approved increasing cell proliferation and alkaline phosphatase (ALP) activity for MG‐63 cells cultured on PCL/Gel/nHA/Vit D3 scaffold. The results indicated superior properties of hydroxyapatite nanoparticles and vitamin D3 incorporated in PCL/Gel scaffold for use in bone tissue engineering.  相似文献   

16.
Asialoglycoprotein receptor (ASGPR) is one of the recognition motifs on the surface of hepatocytes, which promote their adhesion to extracellular matrix in liver tissue and appropriate artificial surfaces. ASGPR-mediated adhesion is expected to minimize trans-differentiation of hepatocytes in vitro that is generally observed in integrin-mediated adhesion. The aim of the present study is to verify the role of ASGPR in hepatocyte adhesion and proliferation in scaffolds for hepatic tissue engineering. Scanning Electrochemical Microscopy (SECM) is emerging as a suitable non-invasive analytical tool due to its high sensitivity and capability to correlate the morphology and activity of live cells. HepG2 cells and rat primary hepatocytes cultured in Polyvinyl alcohol (PVA)/Gelatin hydrogel scaffolds with and without galactose (a ligand for ASGPR) modification are studied using SECM. Systematic investigation of live cells cultured for different durations in scaffolds of different compositions (9:1 and 8:2 PVA:Gelatin with and without galactose) reveals significant improvement in cell–cell communication and proliferation on galactose incorporated scaffolds, thereby demonstrating the positive influence of ASGPR-mediated adhesion. In this work, we have also developed a methodology to quantify the respiratory activity and intracellular redox activity of live cells cultured in porous tissue engineering scaffolds. Using this methodology, SECM results are compared with routine cell culture assays viz., MTS ((1-Oxyl-2,2,5,5,-tetramethyl-Δ3-pyrroline-3-methyl) Methanethiosulfonate) and Albumin assays to demonstrate the better sensitivity of SECM. In addition, the present study demonstrates SECM as a reliable and sensitive tool to monitor the activity of live cells cultured in scaffolds for tissue engineering, which could be used on a routine basis.  相似文献   

17.
Nanostructured biocomposite scaffolds of poly(l-lactide) (PLLA) blended with collagen (coll) or hydroxyapatite (HA), or both for tissue engineering application, were fabricated by electrospinning. The electrospun scaffolds were characterized for the morphology, chemical and tensile properties by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), water contact angle (WCA), Fourier transform infrared (FTIR) measurement, and tensile testing. Electrospun biocomposite scaffolds of PLLA and collagen or (and) HA in the diameter range of 200-700 nm mimic the nanoscale structure of the extracellular matrix (ECM) with a well-interconnection pore network structure. The presence of collagen in the scaffolds increased their hydrophility, and enhanced cell attachment and proliferation, while HA improved the tensile properties of the scaffolds. The biocompatibility of the electrospun scaffolds and the viability of contacting cells were evaluated by 4',6-diamidino-2-phenylindole dihydrochloride (DAPI) nuclear staining and by fluorescein diacetate (FDA) and propidium iodide (PI) double staining methods. The results support the conclusion that 293T cells grew well on composite scaffolds. Compared with pure PLLA scaffolds a greater density of viable cells was seen on the composites, especially the PLLA/HA/collagen scaffolds.  相似文献   

18.
Aligned poly(L-lactide) (PLLA)/poly(?-caprolactone) (PCL)/hydroxyapaite (HA) composite fibrous membranes were fabricated by electrospinning. Their morphology, thermal stability, mechanical properties, hydrophilic properties and biocompatibility were investigated. The electrospun fibers are highly aligned and the HA are oriented along the fiber axis. When HA are incorporated, the PLLA/PCL/HA composite fibers become thinner due to the increased conductivity. In addition, the aligned HA reinforce the electrospun fibrous membranes. The larger porosity and higher hydrophilic properties induced by HA in the electrospun fibers have improved the degradation of the PLLA/PCL/HA fibrous membranes which have no toxic effect on proliferation of adipose-derived stem cells.  相似文献   

19.
After about three decades of experience, tissue engineering has become one of the most important approaches in reconstructive medical research to treat non‐self‐healing bone injuries and lesions. Herein, nanofibrous composite scaffolds fabricated by electrospinning, which containing of poly(L‐lactic acid) (PLLA), graphene oxide (GO), and bone morphogenetic protein 2 (BMP2) for bone tissue engineering applications. After structural evaluations, adipose tissue derived mesenchymal stem cells (AT‐MSCs) were applied to monitor scaffold's biological behavior and osteoinductivity properties. All fabricated scaffolds had nanofibrous structure with interconnected pores, bead free, and well mechanical properties. But the best biological behavior including cell attachment, protein adsorption, and support cells proliferation was detected by PLLA‐GO‐BMP2 nanofibrous scaffold compared to the PLLA and PLLA‐GO. Moreover, detected ALP activity, calcium content and expression level of bone‐related gene markers in AT‐MSCs grown on PLLA‐GO‐BMP2 nanofibrous scaffold was also significantly promoted in compression with the cells grown on other scaffolds. In fact, the simultaneous presence of two factors, GO and BMP2, in the PLLA nanofibrous scaffold structure has a synergistic effect and therefore has a promising potential for tissue engineering applications in the repair of bone lesions.  相似文献   

20.
Aligned poly(L-lactide) (PLLA)/poly(?-caprolactone) (PCL)/poly(ethylene glycol)(PEG) fibrous membranes were fabricated by electrospinning. Their morphology, thermal stability, mechanical properties, hydrophilic properties and in vitro degradation behaviors were investigated. With increasing the content of PEG, the PLLA/PCL/PEG blend fibers become thinner due to the increment in solution conductivity and decrease in solution viscosity. The thermal stability, hydrophilic properties, the tensile strength and elongation-at-break of PLLA/PCL/PEG blend fibrous membranes were improved, but porosity were decreased with the content of PEG changing from 10 wt% to 30 wt%. Furthermore, the incorporation of PEG enhanced the degradation of the PLLA/PCL/PEG fibrous membranes due to the better hydrophilic properties. In addition, the PLLA/PCL/PEG fibrous membranes have no toxic effect on proliferation of adipose-derived stem cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号