首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   0篇
  国内免费   10篇
化学   16篇
物理学   1篇
  2020年   2篇
  2019年   1篇
  2018年   1篇
  2016年   4篇
  2015年   1篇
  2014年   1篇
  2013年   1篇
  2012年   1篇
  2009年   1篇
  2007年   2篇
  2006年   2篇
排序方式: 共有17条查询结果,搜索用时 15 毫秒
1.
采用静电纺丝法制备PET/CTS复合纳米纤维膜,并在纤维膜表面吸附一层纳米银,进一步增加纤维膜的抗菌性能.以扫描电镜(SEM)对不同配比PET/CTS所制备的纤维膜的微观形貌进行表征,结果显示w(CTS)/w(PET)为12.5%时,纤维形貌较好,平均直径为405 nm.分别对不同厚度的PET/CTS纤维膜进行力学性能、透气性能以及空气过滤性能测试,结果表明纺丝时间为7 h时,纤维膜具有较好的性能,其弹性模量为48.15 MPa、断裂伸长率183.30%、拉伸断裂应力2.11 MPa、拉伸强度2.49 MPa、拉伸屈服应力1.23 MPa、最大力1.38 N,阻气值为3.99 k Pa·S/m,过滤效率为99.55%,压降为621.32 Pa.吸附银离子实验表明,最佳GA交联浴配比为GA(vol%)=3.5%.紫外可见光谱(UV)及透射电镜(TEM)表征证明,有10 nm左右纳米银生成.抑菌实验表明,载银PET/CTS复合纳米纤维膜对金黄色葡萄球菌(S.a.)和大肠杆菌(E.coli.)的杀菌率分别为99.97%和99.99%.  相似文献   
2.
采用静电纺丝技术分别制备了无规排列和高度取向排列的聚对苯二甲酸乙二醇酯(PET)和PET/CA(柠檬酸)4种纤维膜,对它们的润湿性能和力学性能进行了研究,同时研究了纤维膜厚度对膜的力学性能的影响.研究结果表明,与无规排列的PET纤维膜相比,取向排列的PET纤维膜沿纤维取向方向的力学性能有了很大的提高,而断裂伸长率略有下降;加入柠檬酸(CA)后,PET/CA复合纤维膜的表面水接触角从132.3!减少到0!,且取向排列的纤维膜比无规排列的纤维膜更易润湿;无规排列的复合纤维膜的力学性能因加入CA而大幅下降,取向排列的PET/CA纤维膜沿纤维取向方向的力学性能下降较小,而无规排列的PET/CA纤维膜的断裂伸长率从284.1%增加到444.5%.无规排列纤维膜的力学性能随膜厚度的增加先提高,后来又下降,而取向排列的纤维膜沿纤维取向方向的力学性能随膜厚度增加而单调增加.  相似文献   
3.
纳米BaFe12O19纤维的电纺制备及磁性研究   总被引:1,自引:0,他引:1  
以PVP的乙酸溶液为助纺剂,采用静电纺丝技术制得了纳米BaFe12O19纤维,利用XRD和EDS对样品的物相和成分进行了分析,利用SEM和TEM对样品形貌和粒径进行了表征,并利用振动样品磁强计(VSM)对样品进行了磁性能研究.结果表明,BaFe12O19/PVP复合纤维经过800℃煅烧后,制得了纯净的BaFe12O19纳米纤维,纤维平均直径为150 nm,呈现出多晶结构,矫顽力为4 164.9 G,与粉体相比,矫顽力有较大提升,有望扩展BaFe12O19在高密度垂直记录材料、微纳米电子材料和微波材料等领域的应用.  相似文献   
4.
以聚对苯二甲酸二醇酯(PET)无纺布为基底,聚偏氟乙烯(PVDF)纳米纤维为支撑层,聚乙烯醇(PVA)纳米纤维膜为分离层,采用静电纺丝法制备超滤膜,并用水/丙酮混合溶液对复合纳米纤维膜表面进行溶液处理,再加入戊二醛交联改性得到致密分离层.采用扫描电子显微镜(SEM)和红外光谱(FTIR)表征了复合超滤膜的表面,用水接触角(WCA)表征复合超滤膜的亲水性.在0.02 MPa恒压下死端过滤油/水乳液,测试复合超滤膜的过滤性能.结果表明,最优条件下制备的复合超滤膜死端过滤油/水乳液的通量为(42.50±4.78)L/(m~2·h),截留率达到(95.72±0.33)%;循环使用5次后,依然具有较好的过滤性能,常压下死端过滤复合超滤膜的纯水通量为(3469±28)L/(m~2·h).  相似文献   
5.
铟是一种银白色稀有稀散金属,在地壳中的平均质量分数为0.000 01%,为了准确测定烟道灰样品中低含量的铟,通过对样品成分的初步分析,确定实验中溶解样品所用的酸及其比例。依次逐步加入HCl, HNO3, HF和HClO4(V∶V∶V∶V=15∶5∶2∶2),将样品完全溶解后,冷却至室温并移入分液漏斗,在HBr介质中,以溴化铵做盐析剂(溶液体积控制在25 mL左右);移取25 mL乙酸乙酯作为萃取剂和稀释剂,萃取液直接导入配备有机进样系统的电感耦合等离子体原子发射光谱仪(ICP-AES),选择In 230.606 nm为分析谱线,对烟道灰样品中的铟进行测定,从而建立了电感耦合等离子体原子发射光谱法(ICP-AES)测定烟道灰样品中铟的方法。实验样品溶解后,采用萃取分离法消除基体元素及共存元素的干扰。通过对萃取酸度、萃取剂、萃取方法、盐析剂、分析谱线等条件试验,确定了最优的实验条件。铟的质量浓度在0.25~4.00 mg·L^-1范围内与其发射强度呈线性关系,校准曲线线性相关系数为0.999 3,检出限为0.03 mg·L^-1,测定结果的相对标准偏差(n=11)小于5%,回收率在92%~102%之间。按照上述试验步骤测定5个烟道灰样品中的铟含量,其测定结果与ICP-MS法比较吻合。另外,与现有的分析方法(EDTA滴定法、分光光度法、原子吸收光谱法、 X射线荧光光谱法、电感耦合等离子体原子发射光谱法及质谱法等)相比,该法具有简便,快速,灵敏,准确度较高的优点,可用于铟含量在0.000 8%~0.10%之间烟道灰样品的批量检测。  相似文献   
6.
7.
基于分子二维图形特征得到了一种新的结构参数化方法:分子电性作用矢量(MEIV)。将其应用于113个单质子化肽段样本集的结构表征及离子迁移谱碰撞截面模拟和预测当中,通过严格检验所得到3个回归模型的复相关系数Rcum及交叉验证Q分别为:0.984、0.981、0.980和0.979、0.979、0.978。结果表明MEIV对有机分子结构及其性质具有良好的表达和预测能力。  相似文献   
8.
以支持向量机(SVM)和线性判别分析(LDA)对200条禽流感病毒、100条B型流感和100条C型流感病毒蛋白共400条为训练集样本,从表征序列的200个整体与局部变量中以逐步(stepwise)方法选取24个变量作为LDA模型的输入建立线性识别模型,病毒蛋白总识别率达99.8%,留一法交互检验总识别率为99.4%.从原始200变量中经主成分分析得16个主成分作为SVM的输入,以径向基核函数(RBF)SVM建立非线性识别模型,病毒蛋白总识别率为99.8%,留一法交互检验总识别率为99.2%.以100条禽流感、50条B型流感和50条C型流感病毒编码蛋白质共200条为测试集样本,得LDA模型,对其总识别正确率为95.4%,SVM模型对其总识别正确率为96.5%.识别结果表明,两个模型都可较好识别禽流感病毒蛋白,并且SVM对禽流感病毒蛋白的识别结果优于LDA.  相似文献   
9.
采用静电纺丝法制备聚丙烯腈(PAN)纳米纤维膜,再以盐酸羟胺为改性剂对PAN纳米纤维膜进行偕胺肟化处理成功制备出偕胺肟化纳米纤维膜(AOPAN).通过扫描电子显微镜(SEM)、红外光谱(FTIR)、水接触角等对其物理化学性质进行表征并研究其吸附重金属Cr(Ⅵ)的能力.结果表明,PAN纳米纤维在水浴温度60℃,水热时间3.5 h条件下进行改性后,纤维直径明显变粗,并且有一定程度的弯曲.由红外光谱(FTIR)分析发现改性后的PAN纳米纤维膜在3500~3300 cm~(-1)范围内出现了2个双峰,并且接触角由114.5°变为29.8°,说明成功地将PAN纳米纤维改性为含有—NH_2基团的AOPAN纳米纤维.该AOPAN纳米纤维膜对铬的吸附实验表明,在p H=2时,吸附约5 h后达到最佳除铬效果,吸附量可达102.5 mg/g,并且满足准一级动力学方程,符合Langmuir吸附模型.主要是由于制备的AOPAN含有—NH_2基团,在酸性条件下被质子化为—NH_3~+,更易与HCr O_4~-结合.而且这种膜材料在使用后便于取出,经稀Na OH溶液洗涤后,能够重复使用,循环4次后仍能保持50%以上的去除率,在处理重金属离子方面具有非常大的潜力.  相似文献   
10.
以含有—NH2和C═N的偕胺肟化聚丙烯腈(AOPAN)纳米纤维膜为载体, 通过水热法在AOPAN纳米纤维膜表面原位生长片状Mg(OH)2纳米粒子, 得到具有多层次结构的有机-无机电纺复合纳米纤维膜[AOPAN@Mg(OH)2], 并研究了AOPAN@Mg(OH)2的除铬性能. 研究结果表明, 当水热温度为40 ℃, 水热时间为7 h时, AOPAN纳米纤维膜表面形成了明显的多层次结构的Mg(OH)2纳米晶体. 当溶液pH=2时, AOPAN@Mg(OH)2复合纳米纤维膜对Cr(Ⅵ)的吸附符合Langmuir模型, 且满足二级动力学方程, 5 h后最大吸附量达到123.5 mg/g. AOPAN@Mg(OH)2复合纳米纤维膜中含有—NH2基团和Mg(OH)2纳米粒子, 在酸性条件下可以质子化为带正电的—NH3+和Mg(OH)2H+, 通过静电吸附更易与HCrO4-结合. 此类复合纳米纤维膜材料在水体中易取出, 并且在稀NaOH溶液中可以解吸附, 循环使用4次去除率仍可以保持在50%以上.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号