首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
高效液相色谱法同时测定水产品中4种硝基呋喃原药残留   总被引:2,自引:0,他引:2  
建立了同时测定水产品中4种硝基呋喃类原药(呋喃它酮、呋喃西林、呋喃妥因和呋喃唑酮)的高效液相色谱分析方法。样品经乙酸乙酯提取,旋转蒸发仪浓缩,流动相溶解,正己烷去脂后,用配有紫外检测器的高效液相色谱仪检测,外标法定量。结果表明:4种药物在0.010~0.25μg/mL范围内呈良好的线性关系,相关系数R2均大于0.998,呋喃它酮、呋喃西林、呋喃妥因和呋喃唑酮的检测限和定量检测限分别为1.0μg/kg和3.00μg/kg。4种药物在样品中3个不同浓度添加水平下的平均回收率(n=5)为70.9%~116.8%,RSD为1.7%~14%。该方法适合于水产品中硝基呋喃类原药的残留分析。  相似文献   

2.
建立了超高效液相色谱-串联质谱(UPLC-MS/MS)测定猪肉组织中4种硝基呋喃类代谢物的分析方法.样品经盐酸水解,2-硝基苯甲醛衍生,乙酸乙酯提取净化,在正离子模式下以电喷雾电离串联质谱进行测定,内标法定量.在优化的实验条件下,4种代谢物在0.5~50μg/kg范围内线性良好,相关系数大于0.995,方法检出限为0.2μg/kg,定量限为0.5μg/kg.在0.5、1.0和10.0μg/kg的添加水平下,4种代谢物的平均回收率在74.6%~104.8%之间,相对标准偏差(RSD,n=6)在2.4%~15.6%之间.方法可应用于猪肉中4种硝基呋喃类药物代谢物残留的同时检测.  相似文献   

3.
建立超高效液相色谱–串联质谱法同时测定水产品中的呋喃唑酮、呋喃它酮、呋喃妥因和呋喃西林4种硝基呋喃代谢物的方法。样品经甲醇、乙醇、乙醚洗涤除杂后,进行衍生,再用Oasis HLB型固相萃取柱净化,在正离子模式下,采用MRM模式同时测定水产品中的呋喃唑酮、呋喃它酮、呋喃妥因和呋喃西林。在优化后的仪器工作条件下进行测定,4种代谢物的质量浓度在0.1~10 ng/mL的范围内线性关系良好,相关系数在0.999 6~0.999 9之间,检出限均为0.05μg/kg。测定结果的相对标准偏差为1.5%~4.2%(n=5),加标回收率为87.3%~94.5%。该方法具有良好的精密度与准确度,可用于同时测定水产品中的呋喃唑酮、呋喃它酮、呋喃妥因和呋喃西林4种硝基呋喃代谢物。  相似文献   

4.
建立了高效液相色谱-串联质谱检测蜂蜡中呋喃唑酮代谢物(AOZ)、呋喃它酮代谢物(AMOZ)、呋喃西林代谢物(SEM)、呋喃妥因代谢物(AHD)残留的分析方法。试样采用正己烷预溶解,酸性水溶液中衍生化,经HLB固相萃取小柱净化,用Agilent Eclipse Plus-C18柱(100 mm×2.1 mm,3.5μm)分离,电喷雾离子源正离子(ESI+)、多反应监测(MRM)模式串联质谱进行测定。结果表明,4种硝基呋喃类代谢物在0.5~10 ng/m L范围内均具有较好的线性关系,相关系数大于0.995。在0.5,1.0和2.0μg/kg添加水平下,样品中4种硝基呋喃类代谢物的回收率在71.8%~119.0%之间,相对标准偏差(RSD,n=6)均小于10%,方法定量限(S/N10)为0.5μg/kg。方法适用于日常蜂蜡样品中4种硝基呋喃类代谢物残留的定性、定量分析。  相似文献   

5.
建立了蜂胶中硝基呋喃类代谢物液相色谱-串联质谱检测方法。样品经固相萃取、衍生、乙酸乙酯提取后进行质谱分析。在1.0、2.0、5.0μg/kg 3个添加水平下,硝基呋喃类代谢物的平均回收率为92.6%~99.3%,日内相对标准偏差小于10%,日间相对标准偏差小于15%。在0.5~20 ng/mL范围内呈良好的线性(r>0.99),检测限为0.25μg/kg,定量限为1.0μg/kg。方法适用于蜂胶中硝基呋喃类代谢物的分析确证。  相似文献   

6.
用高效液相色谱-串联质谱法测定水产品中硝基呋喃代谢物的含量.样品经稀盐酸水解并用2-硝基苯甲醛(2-NBA)衍生,调节其酸度至pH 7.0~7.5,离心,将上清液过Oasis HLB(6 mL)小柱后,以乙酸乙酯为洗脱剂,将洗脱液于40℃在氮气流中挥干,并用乙腈与乙酸(1 99)溶液以体积比3比7混合的溶液溶解.用氘代试剂内标法定量.硝基呋喃代谢物标准的质量浓度在4.5μg·L-1以内呈线性,回收率在80.2%~98.4%之间,相对标准偏差(n=8)在3.75%~8.12%之间,测定限(10S/N)为0.25ug·kg-1.  相似文献   

7.
高效液相色谱-串联质谱法测定香肠中硝基呋喃代谢物   总被引:1,自引:0,他引:1  
高效液相色谱法与串联质谱联用法应用于香肠中硝基呋喃代谢物的测定.试样在稀盐酸溶液中同时加入一定量的衍生试剂邻硝基苯甲醛后,在37 ℃放置过夜使其中与蛋白质结合的硝基呋喃代谢物水解并衍生化.将此溶液的酸度调节至pH 7.0~7.5后,以3 000 r·min-1的转速离心10 min,分出上层清液,用乙酸乙酯萃取.所得萃取液用作HPLC-MS/MS测定.在电喷雾正离子条件下,用多离子反应监测模式,以外标法对萃取液中对经衍生化后的各硝基呋喃代谢物进行定量.在0.5~10 μg·kg-1范围内进行标准加入回收试验,4种硝基呋喃代谢物的回收率在77.3%~90.7%之间,测定值的相对标准偏差小于9%.测得方法的检出限(S/N=3)为:0.10 μg·kg-1对呋喃唑酮、呋喃它酮及呋喃西林的代谢物和0.20 μg·kg-1对呋喃妥因代谢物.  相似文献   

8.
建立了同时测定配合饲料中呋喃唑酮、呋喃它酮、呋喃西林、呋喃妥因的高效液相色谱串联质谱(HPLC-MS/MS)分析方法。样品粉碎后经乙腈提取,在40℃下氮气吹干,残渣用正己烷脱色脱脂,经中性氧化铝小柱净化,采用Sunfire C18柱(150 mm×2.1 mm,5μm)分离,流动相为甲醇和0.05%乙酸铵溶液,梯度洗脱,在MRM正负切换采集模式下进行测定,外标法定量,其中呋喃西林与呋喃妥因采用负离子扫描方式,呋喃它酮与呋喃唑酮采用正离子扫描方式。呋喃唑酮和呋喃妥因的检出限(LOD)为2.0μg/kg,定量下限(LOQ)为5.0μg/kg,呋喃它酮和呋喃西林的检出限(LOD)为3.0μg/kg,定量下限(LOQ)为10.0μg/kg,4种药物在5.0~100.0μg/L范围内线性关系均良好(r>0.99)。以罗非鱼饲料进行加标回收实验,测得4种硝基呋喃原药的回收率为78%~107%,相对标准偏差均小于12%。该方法快速、准确,可用于配合饲料中4种硝基呋喃原药的同时测定。  相似文献   

9.
丁涛  徐锦忠  沈崇钰  吴斌  陈惠兰  朱春  赵增运  蒋原  刘飞 《色谱》2006,24(5):432-435
报道了高效液相色谱-串联质谱联用测定蜂王浆中呋喃唑酮、呋喃西林、呋喃妥因和呋喃它酮4种硝基呋喃类药物的代谢物残留的方法。以三氯乙酸作为蜂王浆的蛋白质沉淀剂,同时提供衍生化反应所需的酸性环境;使用4种同位素内标,补偿了衍生化效率、衍生后样品溶液的pH值及光照对定量结果所产生的影响,极大地提高了定量的准确性。实验结果表明,呋喃它酮代谢物的检测下限可以达到0.03 μg/kg,其他3种硝基呋喃类药物的代谢物的检测下限可以达到0.05 μg/kg(S/N大于5);呋喃它酮代谢物的定量下限可以达到0.20 μg/kg,其他3种硝基呋喃类药物的代谢物的定量下限可以达到0.25 μg/kg(S/N大于10);线性范围为0.4~20 ng/mL,添加回收率为97.7%~104.8%(内标校正),相对标准偏差(RSD)为2.7%~9.7%。  相似文献   

10.
建立了固相萃取-超高效液相色谱串联质谱(SPE-UPLC/MS/MS)同时测定禽畜粪便中6种磺胺类(SAs)、4种四环素类(TCs)、3种氟喹诺酮类(FQs)、3种大环内酯类(MACs)以及1种硝基呋喃类(NFs)抗生素残留的方法。样品分别由McIlvaine-Na2EDTA缓冲液和有机混合提取液逐次超声提取,合并提取液,以正己烷去脂,过SAX-HLB固相萃取系统富集净化,经氮吹、定容后,以乙腈和0.1%甲酸-水溶液为流动相进行UPLC/MS分离检测,内标法定量。在0.1~1000μg/kg(Dry weight)浓度范围内,所有目标物标准曲线R2均大于0.99,样品加标回收率在42.3%~79.6%之间,相对标准偏差为1.4%~5.4%。方法检出限为0.1~2.0μg/kg,定量下限为0.3~6.6μg/kg。应用本方法检测华北地区多个禽畜养殖基地粪便样品32份,所有抗生素均有不同程度的检出,最高检出浓度为金霉素125μg/kg。  相似文献   

11.
The antipsychotics risperidone, aripiprazole and pipamperone are frequently prescribed for the treatment in children with autism. The aim of this study was to validate an ultra‐high performance liquid chromatography–mass spectrometry method for the quantification of these antipsychotics in plasma. An ultra‐high performance liquid chromatography–mass spectrometry assay was developed for the determination of the drugs and metabolites. Gradient elution was performed on a reversed‐phase column with a mobile phase consisting of ammonium acetate, formic acid in methanol or in Milli‐Q ultrapure water at a flow rate of 0.5 mL/min. The method was validated according to the US Food and Drug Administration guidelines. The analytes were found to be stable enough after reconstitution and injection of only 5 μL improved the accuracy and precision in combination with the internal standard. Calibration curves of all five analytes were linear. All analytes were stable for at least 72 h in the autosampler and the high quality control of 9‐OH‐risperidone was stable for 48 h. The method allows quantification of all analytes. The advantage of this method is the combination of a minimal injection volume, a short run‐time, an easy sample preparation method and the ability to quantify all analytes in one run. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

12.
Short‐chain fatty acids are currently the most studied metabolites of gut microbiota, but the analysis of them, simultaneously, is still challenging due to their unique property and wide concentration range. Here, we developed a sensitive and versatile high‐performance liquid chromatography with ultraviolet detection method, using pre‐column derivatization and solid‐phase extraction segmental elution, for the quantification of both major and trace amounts of short‐chain fatty acids in human feces. Short‐chain fatty acids were converted to 3‐nitrophenylhydrazine‐derived analytes, and then solid‐phase extraction segmental elution was used for extraction of major analytes and enrichment of trace analytes. The method validation showed limits of quantitation ?0.04 mM, and coefficient of determination > 0.998 at a wide range of 0.04–8.0 mM. The intra‐ and interday precision of analytes were all within accepted criteria, and the recoveries were 96.12 to 100.75% for targeted analytes in fecal samples. This method was successfully applied in quantification of eight analytes in human feces, which therefore could provide a sensitive and versatile high‐performance liquid chromatography with ultraviolet detection method for precise and accurate quantitation of short‐chain fatty acids in human feces.  相似文献   

13.
For fast and reliable screening, identification, and quantification of as many analytes as possible, multi-analyte approaches are very useful in clinical and forensic toxicology. Using ultra high performance liquid chromatography-tandem mass spectrometry, such an approach has been developed for blood plasma analysis after simple liquid–liquid extraction. In the present paper, validation and application is described for 31 neuroleptics, 28 benzodiazepines, and Z-drugs (zaleplone, zolpidem, and zopiclone). The validation parameters included recovery, matrix effects, process efficiency, ion suppression/enhancement of co-eluting analytes, selectivity, crosstalk, accuracy and precision, stabilities, and limits of quantification and detection. The results showed that the approach was selective, sensitive, accurate, and precise for 24 neuroleptics and 21 benzodiazepines and Z-drugs. The remaining analytes were unstable and/or too low dosed. Cost- and time-saving one-point calibration was applicable only for half of the analytes. The applicability was successfully shown for most of the drugs by analyzing authentic plasma samples and external quality control samples.  相似文献   

14.
A selective accelerated solvent extraction procedure achieved one step extraction and cleanup for analysis of herbicide atrazine and its metabolites in fruit. Using a BEH C18 analytical column and the gradient mode with 2 mM ammonium acetate aqueous solution/acetonitrile as a mobile phase achieved effective chromatographic separation of the five analytes within 4 min. The calibration curves were linear over two orders of magnitude of concentration with correlation coefficients (r) of 0.9996?0.9999. The method limit of quantification was 1, 2, 1.5, 3, and 2 μg/kg for atrazine, desethylatrazine, desisopropylatrazine, desethyldesisopropylatrazine, and hydroxyatrazine, respectively, in the case of atrazine it is at least two orders of magnitude lower than the maximum residue limit (0.25 mg/kg). The intra‐day and inter‐day precisions of the five analytes were in the range of 2.1–3.5 and 3.1–4.8 %, respectively. The recoveries of the five analytes at three spiked levels varied from 85.9 to 107% with a relative standard deviation of 1.8–4.9% for pear and apple samples. The ultra high performance liquid chromatography with diode array detection method was proved to be fast, inexpensive, selective, sensitive, and accurate for the quantification of the analytes in pear and apple samples.  相似文献   

15.
建立了动物源性食品中20种磺酰脲类除草剂多残留的分析方法.样品经乙腈均质提取2次,经Waters Oasis HLB固相萃取小柱净化后,在高效液相色谱-电喷雾串联质谱仪多反应监测模式下测定,采用质谱法定性,外标法定量.除草剂采用Eclipse AAA色谱柱,以甲醇和0.1%乙酸溶液为流动相,在梯度洗脱条件下可以得到很好...  相似文献   

16.
This study developed an improved analytical method for the simultaneous quantification of 13 quinolones in cosmetics by ultra high performance liquid chromatography combined with ESI triple quadrupole MS/MS under the multiple reaction monitoring mode. The analytes were extracted and purified by using an SPE cartridge. The limits of quantification ranged from 0.03 to 3.02 μg/kg. The precision for determining the quinolones was <19.39%. The proposed method was successfully developed for the determination of quinolones in real cosmetic samples.  相似文献   

17.
A comparative study was conducted to assess the injection precision in capillary electrophoresis for cationic analytes (arecoline, codeine, papaverine). The precision was measured in respect to methods sensitivity in various injection modes in capillary electrophoresis: standard hydrodynamic injection (3.45 kPa for 6 s), large volume sample stacking (3.45 kPa for 40 s), and field‐amplified sample injection (10 kV for 65 s). All measurements were conducted for aqueous solutions of standards to minimize the errors linked to the sample preparation step. The methods were submitted to precision assessment at three concentration levels: at the limit of quantification, three‐fold and ten‐fold of limit of quantification. The results were compared to those from high‐performance liquid chromatography as a reference technique. The field‐amplified sample injection method was shown to provide greatest sensitivity (quantification limits down to 4 ng/mL for all three tested compounds) but the lowest precision. High‐performance liquid chromatography was established as the most reliable technique (coefficient of variation in all intraday experiments was below 1%). It was also shown that with a use of large volume sample injection technique, similar sensitivity as in high‐performance liquid chromatography can be easily reached.  相似文献   

18.
The potential for using testosterone and nandrolone esters in racehorses to boost the biological concentrations of these steroids and enhance athletic performance is very compelling and should be seriously considered in formulating regulatory policies for doping control. In order to regulate the use of these esters in racehorses, a sensitive and validated method is needed. In this paper, we report such a method for simultaneous separation, screening, quantification and confirmation of 16 testosterone and nandrolone esters in equine plasma by ultra high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS). Analytes were extracted from equine plasma by liquid-liquid extraction using a mixture of methyl tert-butyl ether and ethyl acetate (50:50, v/v) and separated on a sub-2 micron C(18) column. Detection of analytes was achieved on a triple-quadrupole mass spectrometer by positive electrospray ionization mode with selected reaction monitoring (SRM). Mobile phase comprised 2 mM ammonium formate and methanol. Deuterium-labeled testosterone enanthate and testosterone undecanoate were used as dual-internal standards for quantification. Limits of detection (LOD) and quantification (LOQ) were 25-100 pg/mL and 100-200 pg/mL, respectively. The linear dynamic range of quantification was 100-10,000 pg/mL. For confirmation of the presence of these analytes in equine plasma, matching of the retention time with mass spectrometric ion ratios from MS/MS product ions was used. The limit of confirmation (LOC) was 100-500 pg/mL. The method is sensitive, robust, selective and reliably reproducible.  相似文献   

19.
This paper presents a detailed study on the calibration of a thermal desorption-gas chromatography-mass spectrometry (TD-GC-MS)-based methodology for quantification of volatile organic compounds (VOCs) in gaseous and liquid samples. For the first time, it is documented to what extent three widely encountered problems affect precise and accurate quantification, and solutions to improve calibration are proposed. The first issue deals with the limited precision in MS quantification, as exemplified by high relative standard deviations (up to 40%, n=5) on response factors of a set of 69 selected VOCs in a volatility range from 16 Pa to 85 kPa at 298 K. The addition of [(2)H(8)]toluene as an internal standard, in gaseous or liquid phase, improves this imprecision by a factor of 5. Second, the matrix in which the standard is dissolved is shown to be highly important towards calibration. Quantification of gaseous VOCs loaded on a sorbent tube using response factors obtained with liquid standards results in systematic deviations of 40-80%. Relative response factors determined by the analysis of sorbent tubes loaded with both analytes and [(2)H(8)]toluene from liquid phase are shown to offer a reliable alternative for quantification of airborne VOCs, without need for expensive and often hardly available gaseous standards. Third, a strategy is proposed involving the determination of a relative response factor being representative for a group of analytes with similar functionalities and electron impact fragmentation patterns. This group method approach indicates to be useful (RSD approximately 10%) for quantifying analytes belonging to that class but having no standards available.  相似文献   

20.
A fast, sensitive, and reliable ultra‐high performance liquid chromatography coupled with tandem mass spectrometry method has been developed and validated for simultaneous quantification of geniposide, polygalaxanthone III, 3,6′‐disinapoyl sucrose, α‐asarone, β‐asarone, poricoic acid A, poricoic acid B, dehydrotumulosic acid, deoxyschizandrin, schizandrin B, and kaempferide in plasma after oral administration of extracts of Jia‐Wei‐Kai‐Xin‐San in normal and vascular dementia rats. The developed method was precise and accurate within the linearity range of the analytes. The lower limits of quantification were 1.04–2.68 ng/mL for all the analytes. Both intra‐ and inter day precision and accuracy of the analytes were all within accepted criteria. The mean extraction recoveries of the analytes and the internal standard from rat plasma were all >60.0%. The validated method had been successfully applied to compare pharmacokinetic profiles of the analytes in plasma of normal and vascular dementia rat treated with herbal extracts. Results indicated that differences existed between normal and vascular dementia model rats except dehydrotumulosic acid and kaempferide, which might be due to the pathology of vascular dementia and pharmacological effect of the analytes. These pharmacokinetic studies might benefit for the mechanism exploration and clinical use of traditional Chinese medicine formulae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号