首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 125 毫秒
1.
在纯聚合物型的纤维素三醋酸酯(CTA)、纤维素三苯甲酸酯(CTB)与涂敷型的CTB、纤维素三(4-甲基苯甲酸酯)(CTMB)四种纤维素衍生手性柱上成功地分离了几种外消旋萘普生酯,研究了流动相组成以及溶质的结构对手性分离的影响,探讨了纤维素衍生物手性固定相对外消旋萘普生酯手性识别的机理,得出溶质在固定相手性空腔中体积大小的适应性,尤其是立体结构上的空间适应性是手性识别的关键,不同的固定相这种适应性有所不同,  相似文献   

2.
在Pirkle型的(S,S)-Whelk-O 1与纤维素衍生物型的CDMPC两种手性柱上对六种 外消旋萘普生酯进行了对映体分离,通过研究烷氧基结构上的差异以及流动相中不 同的醇类添加剂对手性识别的影响,探讨和比较了外消旋萘普生酯在两种手性固定 相上手性识别的机理。对于 (S,S)-Whelk-O 1, 溶质与固定相之间的吸引作用于 手性识别的主要因素,而对于CDMPC,溶质在手性空腔中的空间适应性很可能是手 性识别的关键。  相似文献   

3.
在4种自制的涂敷型纤维素衍生物手性柱,即纤维素三苯甲酸酯(CTB)、纤维素三(4-甲基苯甲酸酯)(CTMB)、纤维素三苯基氨基甲酸酯(CTPC)和纤维素三(3,5-二甲基苯基氨基甲酸酯)(CDMPC)与小分子的Prikle型(S,S)-Whelk—O1手性柱上对取代环己酮及取代环己醇进行了对映体分离。研究了溶质的立体结构因素对手性分离的影响,并初步探讨、比较了溶质在这两种手性柱上的手性识别的机理。结果发现,在(S,S)-Whelk—O1柱上溶质与固定相之间的吸引作用是手性识别的主要原因,而对于纤维素衍生物手性柱,溶质的空间结构在手性空腔中的空间适应性可能是手性识别的关键。  相似文献   

4.
采用包夹聚合法,将硅小球同硅烷化试剂反应制得乙烯基硅胶,然后将该乙烯基硅胶同经十一烯酰氯、4-甲基苯甲酰氯衍生的纤维素共聚,制备出含不同官能团的聚合物包夹硅基的键合型纤维素(4-甲基苯甲酸酯)类手性固定相。分别以正己烷异丙醇、正己烷四氢呋喃为流动相,对此键合型手性固定相的手性识别能力进行了评价。为了与同类型的涂敷型纤维素(4-甲基苯甲酸酯)手性固定相作比较,合成了涂敷型纤维素(4-甲基苯甲酸酯)手性固定相。结果表明,键合型纤维素(4-甲基苯甲酸酯)手性固定相具有一定的手性识别能力,可以拆分所研究的6种手性化合物中的4种。  相似文献   

5.
对萘普生和萘普生甲酯的毛细管电泳手性分离   总被引:1,自引:0,他引:1  
以磺化β-CD作为手性分离添加剂,分别对萘普生和萘普生甲酯进行了手性分离研究,当磺化β-CD的浓度为3.5%(W/V)时,萘普生和萘普生甲酯的手性分离度都可大于2,但萘普生与萘普生甲酯不能达到同时拆分。如果同时以磺化β-CD和HP-β-CD作为作为手性分离添加剂,则可对萘普生甲酯达到同时拆分,当磺化β-CD和HP-β-CD的浓度分别为3.5%和1.5%(W/V)时,对萘磺生和萘普生甲酯两种消旋体的  相似文献   

6.
在四种自制的涂敷型纤维素衍生物手性柱,即纤维素三苯甲酸酚(CTB)、纤 维素三(4-甲基苯甲酸酯)(C素三苯基氨基甲酸酯(CTPC)和纤维素三(3,5- 二甲基苯基氨基甲酸酯)(cDMPC)上对4'-甲氧基黄烷酮,56-甲氧基黄烷酮进行 了对映体分离,研究了溶质的结构及流动相的组成对手性分离的影响,并对手性识 别的机理进行了讨,认为π-π作用很可能是上述三种甲氧基黄烷酮在四种纤维素 衍生物手性固定相上保留与手性识别的主要因素,CDMPC,氢键作用也对手性识别 有非常重要的作用.  相似文献   

7.
高效液相色谱手性固定相法分离酸性化合物对映体   总被引:3,自引:0,他引:3  
自制的涂敷型纤维素三(3,5-二甲基苯基氨基甲酸酯)(CDMPC)和Pirkle型(S,S).Whelk-O1两种手性柱上,对6种酸性化合物(西替立嗪、外消旋萘普生、托品酸、布洛芬、酮洛芬以及2,2-二苯环丙烷羧酸)进行了对映体分离。考察了在流动相正己烷中,不同的醇类添加剂、酸性添加剂对手性分离的影响,研究了溶质的体积大小及空间立体结构因素对手性分离的影响,并初步探讨了手性识别机理。  相似文献   

8.
在纤维素衍生物类手性柱上分离托品酸对映体   总被引:5,自引:0,他引:5  
以乙醇-水为流动相,用纤维素-三(苯甲酯)(CTB)作为手性固定相对外消旋体托体品酸进行了高效液相色谱手性分离,考察了不同比例的乙醇-水流动相,不同流速以及用不同醇类酯对托品酸酯在手性色谱柱上的色谱行为,实验表明,流动相中水的比例,流速以及酯化所用醇类均对托品酸酯衍生物分离有很大影响,以动相为乙醇-水(95:5)流速为0.1mL/min的色谱体系,使托品酸乙酯在CTB柱上得到基线分离,对托品酸乙酯在CTB手性固定相上反相手性识别机理进行了讨论.  相似文献   

9.
唐琴  陈先勇  宋航 《分析化学》2007,35(2):240-243
用不同的酰氯化合物与萘普生反应,制备了一系列萘普生衍生物。在正相色谱条件下,对萘普生及其衍生物系列在(R,R)-Whelk-O 1手性固定相(chiral stationary phase,CSP)上进行了对映体拆分研究。实验考察了流动相组成、分离温度等因素对手性分离的影响,并根据相应热力学参数对萘普生及其衍生物在该手性固定相上的手性识别机理进行了初步探讨。研究结果表明:萘普生及其衍生物在Whelk-O 1 CSP上的对映体分离有着与一般正相色谱明显不同的特征,其分离因子α值与流动相组成关系曲线出现了峰值,且分离因子极大值所对应的流动相组成分别为极性较大的20%(V/V,下同)异丙醇/正己烷混合溶剂体系和40%异丙醇/正己烷混合溶剂体系。  相似文献   

10.
罗安  万强  范华均  陈智  吴学昊  黄晓文  臧林泉 《色谱》2014,32(9):1013-1018
采用纤维素-三(4-甲基苯甲酸酯)(CTMB)手性固定相,利用反相色谱法研究了氟比洛芬、普拉洛芬、布洛芬、萘普生、洛索洛芬5种芳基丙酸类手性药物的色谱拆分行为。考察了流动相组成、酸碱添加剂及柱温对上述5种药物对映体分离的影响,并通过热力学研究及对映体结构分析对CTMB固定相的手性拆分机理进行了探讨。结果表明,除萘普生采用乙腈-0.1%(v/v)甲酸溶液外,以甲醇-0.1%(v/v)甲酸水溶液为流动相可使普拉洛芬、洛索洛芬、氟比洛芬和布洛芬的对映体间的分离度均大于1.5,CTMB固定相对这5种芳基丙酸类药物的手性拆分能力依次为普拉洛芬>洛索洛芬>氟比洛芬>布洛芬>萘普生。在各自的优化色谱条件下,将方法应用于上述5种药物制剂的含量测定,结果令人满意。  相似文献   

11.
The comparative enantioseparation of seven chiral triazole fungicides on a Pirkle type (S,S)-Whelk O1 chiral column and four different cellulose derivative columns, namely cellulose tribenzoate (CTB), cellulose tris(4-methylbenzoate) (CTMB), cellulose triphenylcarbamate (CTPC), and cellulose tris(3,5-dimethylphenyl carbamate) (CDMPC), in normal phase mode is described. The seven triazole fungicides investigated were tebuconazole, hexaconazole, myclobutanil, diniconazole, uniconazole, paclobutrazol, and triadimenol. The chiral separation of each solute was investigated with ethanol, n-propanol, iso-propanol, and n-butanol, respectively, as polar modifier in the hexane mobile phase. The results revealed that (S,S)-Whelk O1 was less than universal and only hexaconazole and triadimenol underwent enantioseparation. Among the self-prepared cellulose derivative columns used, the enantiomeric resolution capacities for the studied analytes generally decreased in the order CDMPC > CTPC > CTMB > CTB. The best enantioseparation of the analytes was mostly obtained on CDMPC and none of them were enantioseparated on CTB. The chiral recognition mechanisms between the analytes and the chiral selectors are discussed.  相似文献   

12.
《Analytical letters》2012,45(3):631-638
Abstract

This paper reported the enantioseparation of uniconazole and imazalil using four different self‐prepared cellulose derivative columns, namely, CTB, CTMB, CTPC, and CDMPC. The mobile phase composition including the type of the alcohol modifier and the ethanol concentration in hexane changed, and the influence on the retention factor (k′); for each enantiomer, the separation factor (α) and the resolution (RS) was studied. The influence of the structures of the analytes on the chiral separation was investigated. The results showed that uniconazole obtained the best resolution of 2.16 on CTPC, while imazalil obtained the best separation on CTMB, with the maximal resolution of 4.83. It was concluded that the structure of solutes and CSP play a key role in the chiral recognition. And the chiral attraction between them is the predominant factor.  相似文献   

13.
Three polysaccharide-derived chiral stationary phases (CSP) were evaluated for the resolution of more than 200 racemic compounds of pharmaceutical interest in the reversed-phase (RP) separation mode. The population of test probes was carefully evaluated in order to insure that it covers as completely as possible all structural diversity of chiral pharmaceuticals. RP showed the highest potential for successful chiral resolution in HPLC and LC/MS analysis when compared to normal phase and polar organic separation modes. Method development consisted of optimizing mobile phase eluting strength, nature of organic modifier, nature of additive and column temperature. The newer CSPs, cellulose tris(3-chloro-4-methylphenylcarbamate) and amylose tris(2-chloro-5-methylphenylcarbamate), were compared to the commonly used cellulose tris(3,5-dimethylphenylcarbamate) in regards to their ability to provide baseline resolution. Comparable success rates were observed for these three CSPs of quite complimentary chiral recognition ability. The same method development strategy was evaluated for LC/MS analysis. Diethylamine as additive had a negative effect on analyte response with positive ion mode electrospray (ESI+) MS(/MS) detection, even at very low concentration levels (e.g., 0.025%). Decreasing the organic modifier (acetonitrile or methanol) content in the mobile phase often improved enantioselectivity. The column temperature had only a limited effect on chiral resolution, and this effect was compound dependent. Ammonium hydrogencarbonate was the preferred buffer salt for chiral LC with ESI+ MS detection for the successful separation and detection of most basic pharmaceutical racemic compounds. Ammonium acetate is a viable alternative to ammonium hydrogencarbonate. Aqueous formic acid with acetonitrile or methanol can be successfully used in the separation of acidic and neutral racemates. Cellulose tris(3-chloro-4-methylphenylcarbamate) and amylose tris(2-chloro-5-methylphenylcarbamate) emerge as CSPs of wide applicability in either commonly used separation modes rivaling such well established CSPs as cellulose tris(3,5-dimethylphenylcarbamate). Screening protocols including these two new CSPs in the preferentially screened set of chiral columns have higher success rates in achieving baseline resolution in shorter screening time.  相似文献   

14.
Several kinds of racemic naproxen ester were successfully separated on CTMB chiral stationary phase with hexane-ethanol(98:2,vol./vol.) as the mobile phase. The influence of mobile phase composition and structure of racemic naproxen ester on chiral separation was studied and the chiral recognition mechanism of CTMB was discussed.  相似文献   

15.
Immobilized polysaccharide-based chiral stationary phases (CSPs) are gaining importance in the resolution of racemic compounds due to their stable nature on working with normal solvents and those prohibited for use with coated phases (tetrahydrofuran, chloroform, dichloromethane, acetone, 1,4-dioxane, ethyl acetate, and certain other ethers). This review discusses the use of immobilized polysaccharide CSPs in the chiral resolution of various racemates by liquid chromatography. The discussion includes immobilization methodologies, enantioselectivities, efficiencies, and a comparison of chiral recognition capabilities of coated vs. immobilized CSPs. Some applications of immobilized CSPs to the chiral resolution of racemic compounds are also presented.  相似文献   

16.
A set of 42 chiral compounds containing stereogenic sulfur was prepared. There were 31 chiral sulfoxide compounds, three tosylated sulfilimines and eight sulfinate esters. The separations were done using five different macrocyclic glycopeptide chiral stationary phases (CSPs), namely ristocetin A, teicoplanin, teicoplanin aglycone (TAG), vancomycin and vancomycin aglycone (VAG) and seven eluents, three normal-phase mobile phases, two reversed phases and two polar organic mobile phases. Altogether the macrocyclic glycopeptide CSPs were able to separate the whole set of the 34 sulfoxide enantiomers and tosylated derivatives. Five of the eight sulfinate esters were also separated. The teicoplanin and TAG CSPs were the most effective CSPs able to resolve 35 and 33 of the 42 compounds. The three other CSPs each were able to resolve more than 27 compounds. The normal-phase mode was the most effective followed by the reversed-phase mode with methanol-water mobile phases. Few of these compounds could be separated in the polar organic mode with 100% methanol mobile phases. Acetonitrile was also not a good solvent for the resolution of enantiomers of sulfur-containing compounds, neither in the reversed-phase nor in the polar organic mode. The structure of the chiral molecules was compared to the enantioselectivity factors obtained with the teicoplanin and TAG CSP. It is shown that the polarity, volume and shape of the sulfoxide substituents influence the solute enantioselectivity factor. Changing the oxidation state of the sulfur atom from sulfoxides to sulfinate esters is detrimental to the compound's enantioselectivity. The enantiomeric retention order on the teicoplanin and TAG CSPs was very consistent: the (S)-(+)-sulfoxide enantiomer was always the less retained enantiomer. In contrast, the (R)-(-)-enantiomer was less retained by the ristocetin A, vancomycin and vancomycin aglycone columns, showing the complementarity of these CSPs. The macrocyclic glycopeptide CSPs provided broad selectivity and effective separations of chiral sulfoxides.  相似文献   

17.
Polysaccharide CSPs are recognized widely in chiral chromatography but the introduction of immobilized phases (Chiralpak IA, Chiralpak IB and Chiralpak IC columns) is a remarkable achievement. The immobilized CSPs can be used with organic, normal and reversed phase modes; even with prohibited solvents too (tetrahydrofuran, chlorofom, dichloromethane, acetone, 1,4-dioxane, ethylacetate, and certain other ethers). Their susceptibilities to work with a wide range of solvents have increased the range of applications including chiral recognition mechanisms. Besides, these are also useful for monitoring the progress of stereo-specific reactions; normally need prohibited solvents. The present review describes the various aspects of commercial available immobilized chiral columns. Attempts have been made to discuss immobilized polysaccharides CSPs, immobilized vs coated CSPs, comparison of immobilized CSPs, method development, optimization, chiral recognition mechanism and applications. The chiral recognition capabilities of commercial columns were in the order of Chiralpak IA > Chiralpak IB > Chiralpak IC columns; but complimentary to each other. Of course, these CSPs are not fully developed and need more advancements and applications. Definitely, the future of immobilized CSPs is quite better. Hopefully, in the coming years they will be the choice of the chromatographers for chiral separations in liquid chromatography.  相似文献   

18.
李国祥  艾萍  周玲玲  赵峰  丁惠  李莉  袁黎明 《化学研究》2006,17(4):71-72,75
以微晶纤维素和对甲基苯甲酰氯为原料,合成了纤维素-三(4-甲基苯甲酸酯),并以3-氨丙基-三乙氧基硅烷修饰的硅胶为载体,制备了涂敷型纤维素-三(4-甲基苯甲酸酯)液相色谱固定相,对该固定相进行了表征,并在正相条件下对13种对映异构体进行了拆分,其中9种得到了分离,该柱表现出良好的手性分离性能.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号