首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
采用一种新的溶液生长法结合多步包覆法在自制的不同粒径SiO2单分散亚微球表面包覆不同厚度的β-FeOOH涂层,得到单分散β-FeOOH/SiO2核壳结构亚微球.实验结果表明,SiO2核心颗粒尺寸对表面涂层的形态和包覆均匀性有很大影响.当SiO2核心颗粒的平均粒径为250 nm左右时,β-FeOOH表面涂层均匀,颗粒间团聚较少,一次包覆后涂层厚度约为35 nm.涂层中β-FeOOH纳米棒的尺寸随着所选SiO2核心颗粒粒径的增大而相应增大.经多次包覆能够显著提高涂层的厚度,3次包覆后β-FeOOH表面涂层厚约100 nm.β-FeOOH/SiO2核壳结构亚微球与质量分数5%的NaOH溶液反应后,于600℃焙烧2 h得到了单分散α-Fe2O3空心微球.单分散α-Fe2O3空心亚微球表层是由α-Fe2O3纳米棒搭建而成的三维网络结构,α-Fe2O3纳米棒的尺寸与核壳结构中β-FeOOH纳米棒的尺寸基本一致.  相似文献   

2.
以油页岩灰渣提取的硅酸钠为原料,采用溶胶-凝胶法并结合多种纳米粉体分散技术,制备了分散性好、粒径均一的纳米SiO2,其平均粒径约为10 nm。 制备过程中聚乙二醇(PEG)的加入能够有效的降低纳米SiO2的表面能,减少粒子的团聚, PEG的最佳浓度为3.0%;超声振荡的空化作用所释放出的巨大冲击波和微射流,能有效地击散纳米SiO2团聚体,其最佳超声时间为0.5 h;硅酸湿凝胶与正丁醇共沸蒸馏能有效脱除凝胶中的水,防止干燥过程中颗粒间硬团聚。  相似文献   

3.
许戈文  戴震  李智华  李莉 《应用化学》2011,28(4):408-413
以异佛尔酮二异氰酸酯(IPDI)、聚醚二醇(N-210)、二羟甲基丙酸(DMPA)、一缩二乙二醇(DEG)、三羟甲基丙烷(TMP)及纳米氧化锡锑(ATO)浆料为主要原料,制备了稳定的纳米ATO改性水性聚氨酯(APU)乳液。 粒径测试及透射电子显微镜(TEM)观察显示,纳米ATO在水性聚氨酯中分散较好,乳液粒径均小于100 nm; FTIR分析表明,纳米ATO粒子与水性聚氨酯(WPU)间可能存在化学键; 热重分析(TGA)测试显示,随纳米ATO添加量的增加,胶膜最大热分解温度逐渐提高,最大提高了约20 ℃;紫外-可见-近红外吸收及保温性能测试表明,随着纳米ATO添加量的提高,胶膜在800~2500 nm的透过率逐渐降低,但涂层在可见光区透过率均超过70%,热阻率由1.34×10-2 m2·℃/W提高至3.17×10-2 m2·℃/W。  相似文献   

4.
本论文研究了原子转移自由基聚合法(ATRP)在纳米二氧化硅(SiO2)表面接枝聚丙烯酸丁酯(PBA)以及其对聚甲醛(POM)进行改性。红外光谱(FTIR)、透射电镜(TEM)及凝胶渗透色谱(GPC)等测试表明:采用ATRP法可制备均匀分散的SiO2-g-PBA纳米复合粒子。力学性能、扫描电子显微镜(SEM)及透射电子显微镜(TEM)等测试表明:纳米SiO2在POM中团聚明显,而SiO2-g-PBA纳米复合粒子POM中分散均匀,导致POM/SiO2-g-PBA纳米复合材料的缺口冲击强度明显高于POM及POM/SiO复合材料,当SiO2-g-PBA纳米复合粒子的质量分数为2%时,POM/SiO2-g-PBA复合材料的冲击强度是POM的8倍多,同时拉伸强度有一定的增加。  相似文献   

5.
以表面含有氨基的可反应性纳米SiO2(RNS-A)和表面含有烷基碳链的可分散性纳米SiO2(DNS-3)作为填料,利用原位聚合法制备了尼龙6/SiO2纳米复合材料(相应的复合材料分别简记为RPA和DP3);采用透射电子显微镜观察了复合材料中纳米SiO2的表面形貌,并利用热失重分析仪测定了复合材料的热稳定性,进而考察了纳米SiO2表面功能基团对尼龙6力学性能和热稳定性的影响.结果显示,纳米SiO2能够很好地分散在尼龙6基体中,并使尼龙6的热分解温度提高10℃左右.与此同时,RPA的最大拉伸强度和冲击强度较纯尼龙6的分别提高34.5%和12.5%,DP3的最大拉伸强度和冲击强度分别提高18.2%和45.7%.这表明两种纳米SiO2均可以有效地提高尼龙6的力学性能和热稳定性;可以推测,纳米SiO2的增强效应与其在尼龙6基体材料中的分散和界面作用有关.  相似文献   

6.
采用萃取阶段加入纳米粒子的方式,制得纳米SiO2改性的超高分子量聚乙烯(UHMWPE)纤维.借助于扫描电镜、声速法、WAXD、DSC、TMA和强力测试等手段,研究了纳米SiO2对UHMWPE纤维结构和性能的影响.结果表明,纳米SiO2粒子在UHMWPE纤维中可达到均匀分散,分散尺寸约为50~100nm;改性后纤维取向度、结晶度基本不变,纤维横向晶粒尺寸大大降低,纤维力学强度稍有增加,力学模量大大增加(由1359.2cNdtex增加到1505.9cNdtex),同时,纤维热性能和热力学性能也得到大大改善.  相似文献   

7.
采用溶胶-凝胶法合成粒径在50—150nm范围内的二氧化硅(SiO2)纳米粒子。用甲基丙烯酸-3-(三甲氧基硅基)丙酯(MPS)对SiO2纳米粒子表面进行修饰,使其表面接枝能参与自由基聚合反应的碳碳双键基团。用元素分析、FTIR、^13C CP/MASNMR和^29Si CP/MASNMR等手段对修饰过的SiO2纳米粒子进行表征,以确证MPS接枝在SiO2纳米粒子上。分析修饰过的SiO2纳米粒子的^29Si CP/MASNMR和FTIR谱图,还可初步推断MPS接枝在SiO2纳米粒子表面的机理:MPS首先发生水解缩合反应形成低聚物,然后通过氢键作用吸附到SiO2纳米粒子表面,最后MPS低聚物中未缩合的硅羟基与SiO2纳米粒子表面的硅羟基发生缩合反应。  相似文献   

8.
纳米SiO_2粒子锚固偶氮引发剂及接枝聚甲基丙烯酸甲酯   总被引:5,自引:0,他引:5  
对纳米SiO2 粒子锚固偶氮引发剂 ,进而引发甲基丙烯酸甲酯聚合而制备聚甲基丙烯酸甲酯(PMMA) 纳米SiO2 复合粒子进行了研究 .纳米SiO2 先用环氧型硅烷偶联剂处理 ,再与偶氮二氰基戊酸发生缩合反应而锚固上偶氮引发剂 ,通过差示扫描量热和元素分析证明了引发剂在纳米SiO2 表面的锚固 .通过改性纳米SiO2 存在下MMA的乳液聚合 ,制备得到了接枝率为 2 3 2 %、接枝效率为 36 1%的PMMA 纳米SiO2 复合粒子 .经乳液聚合后 ,纳米SiO2 粒子团聚程度减小 ,在水相中分散稳定 .  相似文献   

9.
选用硅烷偶联剂KH570对纳米Al_2O_3进行表面改性处理,并用改性后的Al_2O_3对双酚A环氧丙烯酸酯进行复合改性,研究了纳米Al_2O_3含量(1%(wt)~5%(wt))对树脂性能的影响。结果表明:改性纳米Al_2O_3质量分数为5%时的复合材料的体积收缩率最小,为6.48%;粒子质量分数为2%时,树脂的凝胶率最大,为88.3%;热失重测试结果表明,改性纳米Al_2O_3提高了树脂的热稳定性;拉伸性能显示,随着改性纳米Al_2O_3质量分数的增加,复合材料的拉伸强度先升高后下降,当改性纳米Al_2O_3质量分数为3%时,复合树脂拉伸强度最大,为34.74MPa,与未改性树脂相比,拉伸强度提高了108.27%。本文所制备的改性光敏树脂可适用于3D打印环境。  相似文献   

10.
简要介绍了纳米二氧化硅(SiO2)粒子的制备方法、结构和特性,对近年来国内外纳米SiO2的表面处理方法及聚合物/SiO2纳米复合材料的制备方法进行了阐述,并针对不同改性方法和制备方法的特点加以分析比较;讨论了SiO2粒子的分散机理和增强机理,并对未来的研究内容及方向提出展望。  相似文献   

11.
Preparation and characterization of nanocomposite polyurethane   总被引:3,自引:0,他引:3  
Polyurethane/nanosilica composites were prepared using polyester polyol/nanosilica composite resins obtained from in situ polymerization or blending methods and investigated by Fourier transform infrared spectra (FTIR), dynamical mechanical analysis (DMA), transmittance electron microscopy (TEM), contact angle measurement, X-ray photoelectron spectroscopy (XPS), and atomic force microscopy (AFM), respectively. It was found that more polyester segments had chemically bonded with silica particles during in situ polymerization than during blending, introducing nanosilica increased the Tgs of polyurethanes, and different preparation methods and different particle sizes caused various impact on Tg. Contact angle measurement and XPS analyses indicated that nanosilica tended to move towards the surfaces and interfaces of polyurethane coats, decreasing the free energies of the surfaces and interfaces, but the nanosilica particles were just observed at interfaces not surfaces by AFM.  相似文献   

12.
Nanosilica particles with different surface properties were designed and prepared using colloidal silica particles and four different qualitative silane coupling agents (SCA), namely methyltriethoxysilane (MTES), octyltriethoxysilane (OTES), vinyltriethoxysilane (VTES) and methacryloxypropyltrimethoxysilane (MATMS), and further applied in acrylic resins and corresponding polyurethane coats by in situ polymerization. It was found that different qualitative SCA molecules had very different impacts on the redispersibility of nanosilica particles, the adsorbed acrylic polyol molecules, the viscosities of acrylic polyol/silica hybrid resins, and the properties of acrylic-based polyurethane/silica composites.  相似文献   

13.
Polyester‐based polyurethane/nanosilica composites were prepared via in situ polymerization and investigated by contact angle measurement, transmission electron microscopy (TEM), atomic force microscopy (AFM) and peel testing in an Instron testing machine. The contact angle and surface free energy results show that nanosilica tended to enrich at the interface between nanocomposite polymers and the substrates, TEM indicated that nanosilica particles were evenly dispersed in the bulk and AFM demonstrated that nanoparticles were located at both the surfaces and interfaces of nanocomposite polymers and that the roughness of both the surfaces and interfaces had a decreasing tendency as the nanosilica content increased, as did the adhesion strength between the nanocomposite polymers and substrates. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

14.
A novel medium-length fluorinated diols and poly(L-lactide) (PLLA) were synthesized via Michael addition reaction and ring-opening polymerization, respectively. Subsequently, Synthetic medium-length fluorinated diols and PLLA were combined to prepare new polyurethane composites with degradability and low surface energy. The compositional analysis and structural characterization of synthetic materials were characterized by using fourier transform infrared spectroscopy (FT-IR) and proton nuclear magnetic resonance spectra (1HNMR). Thermogravimetric analysis(TGA) indicated that the introduction of medium-length fluorinated diols improved the thermal stability of the polyurethane. The biodegradation and low surface energy of the polyurethane were investigated by static hydrolysis experiment and water contact angle test. It was found that the degradation rate of the polyurethane increased as measurement time went on when the PLLA content was under 40%, and the water contact angle increased from 71.12° to 108.24° with the increase of fluorine content, which indicated that the degradable and low surface energy polyurethane has a potential as a coating material for a marine antifouling coating application.  相似文献   

15.
PU/纳米SiO2溶胶杂化材料的前端聚合研究   总被引:2,自引:0,他引:2  
前端聚合(FP)是通过在单体前端区域引发增长聚合将单体合成为聚合物的一种不同于传统的反应模式.它是一种通过局部反应区域在聚合物单体中的移动而将聚合物单体转变为聚合物的一种反应模式,主要运用在放热反应中,在反应初始阶段进行短时间的加热,然后停止加热,借助放热反应的热自催化完成单体的聚合。根据反应机理的不同,  相似文献   

16.
通过悬浮聚合的方法,用不同表面结构的纳米SiO2对聚甲基丙烯酸甲酯(PMMA)进行原位改性,得到纳米SiO2/聚甲基丙烯酸甲酯复合材料;利用红外光谱仪分析了复合材料的界面化学结构,利用热分析仪测定了其热稳定性,并采用冲击试验机测定了其力学性能.结果表明,不同表面结构的纳米SiO2均参与甲基丙烯酸甲酯的聚合反应,与PMMA基体之间形成化学键;而表面修饰有双键的纳米SiO2更易与甲基丙烯酸甲酯聚合,能更有效地提高PMMA的抗冲击性能.  相似文献   

17.
Polyurethane–nanosilica hybrids were synthesized with frontal polymerization. Structurally well‐dispersed and stable hybrids were obtained via a two‐step functionalization process: First, the silica was encapsulated with 3‐aminopropyltriethoxysilane (APTS). Second, poly(propylene oxide) glycol, toluene 2,4‐diisocyanate, 1,4‐butanediol, and a catalyst (stannous caprylate) were dissolved in dimethylbenzene and mixed together at room temperature along with the modified nanosilica. A constant‐velocity propagating front was initiated via the heating of the end of the tubular reactor. For the complete encapsulation of the silica with APTS, different weight ratios of APTS to silica were investigated. The polyurethane hybrids were characterized with Fourier transform infrared, differential scanning calorimetry, and transmission electron microscopy. The polyurethane hybrids produced by frontal polymerization had the same properties as those produced by batch polymerization with stirring, but the frontal polymerization method required significantly less time and lower energy input than the batch polymerization method. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 1670–1680, 2005  相似文献   

18.
The polymeric diols with comb-branched structure (CPD) and their nanocomposites containing montmorillonites (MMT) were prepared through three-step reaction on basis of molecular design. The effect of experimental parameters, such as molar mass of oligomer polyols, catalysts and MMT on conversion of -NCO group during polymerization was investigated by utilizing FTIR to measure content of -NCO group varied as reaction time. In addition, the structure of comb-branched polymeric diols was characterized by FTIR and 1H NMR. The results show that the comb-branched chains contain reactive CC double bonds in CPD. The nature of dispersion of montmorillonites in CPD was characterized by X-ray diffraction. The results show that Na+-MMT is exfoliated and organo-MMT is intercalated in CPD via in-situ polymerization. Finally, the properties of water-borne polyurethane modified with CPD or CPD/2T-MMT nanocomposite were compared with those of common water-borne polyurethane, and the comb-branched chains and 2T-MMT improve the properties of water-borne polyurethane.  相似文献   

19.
The NCO‐terminated prepolymers, prepared by reacting a mixture of poly(tetramethylene glycol) and fumed nanosilica with 4,4′‐diphenylmethane diisocyanate, were chain‐extended with 1,4‐ butanediol to yield polyurethane‐silica nanocomposites. The nanosilica particles were well dispersed in the polyurethane matrix up to 3 wt%. The polyurethane chains in the interfaces were covalently linked to the nanosilica surfaces through urethane bonds. Introduction of the nanosilica into the polyurethane enhanced both tensile strength and elongation of the resulting nanocomposite films. Especially, the elongation at break of the nanocomposite films containing 1 wt% nanosilica was 3.5 times greater than that of the pure polyurethane films. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

20.
In this study, an unsaturated polyester resin (UPR) thin coating containing styrene monomer has been used to consolidate Marrón emperador marble pieces. Different amounts (0.5-3 wt.%) of nanosilica was added to improve several properties, particularly the mechanical properties. The uncured UPR-nanosilica hybrids were characterized by rotational rheology, the gelation was monitored by means of a texture analyser and the viscoelastic and thermal properties were determined in the cured UPR-nanosilica films. Transmission electron microscopy (TEM) was used to establish the degree of dispersion of the nanosilica in the UPR-nanosilica composites. The mechanical performance of the UPR-nanosilica thin coated marble pieces was measured by means of 3-points bending and impact strength tests.Addition of nanosilica imparted pseudoplasticity and thixotropy to the UPR resin and an increase in viscosity was also produced. The rheology of the UPR-nanosilica solutions was fitted to the Casson’s model and an increase in yield stress was obtained. The gel time of the UPR resin was significantly decreased by adding small amounts of nanosilica due to the interactions between the filler and the styrene in the UPR resin. In the cured composites, improved thermal properties in UPR were reached by adding nanosilica due to the creation of a network between the filler and the polymer matrix. Bundle nanometric size nanosilica agglomerates were observed which affected the glass transition temperature and the viscoelasticity of the UPR-nanosilica composites. Finally, the improved properties in UPR obtained by adding nanosilica produced enhanced impact resistance to coated marble pieces, as both stiffness and toughness were improved by nanosilica addition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号