首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 400 毫秒
1.
采用电化学阻抗谱(EIS)研究了双层结构TiO2薄膜的电子积累和与电解液接触界面的电子转移过程. 通过制备纳米颗粒单层和纳米颗粒/亚微米颗粒双层2种不同微结构的TiO2薄膜电极, 对其电容分布、 局域态密度、 薄膜内部电子传输和固/液界面电子转移过程进行了研究. 分析了纳米颗粒/亚微米颗粒双层结构电极对染料敏化太阳电池(DSC)性能的影响. 结果表明, 一定数量的电子会积累在亚微米颗粒层中引起薄膜电极化学电容的增加. 在纳米颗粒层上端覆盖亚微米颗粒后降低了界面复合电阻, 但对薄膜电极的传输性能影响较小. 因此在筛选和制备DSC散射层材料时除应具有良好的光散射性能外, 还应考虑材料的化学电容和界面转移电阻等因素.  相似文献   

2.
强度调制光电流谱研究纳晶薄膜电极过程   总被引:3,自引:0,他引:3  
用强度调制光电流谱研究半导体纳晶薄膜电极光生电荷的界面转移和输运动力学过程.从测量不同外加电压和不同硫化钠溶液浓度下CdSe纳晶薄膜电极的光电流响应得到了参数:归一化稳态光电流和表面态寿命,分析界面空穴的直接转移和通过表面态的间接转移过程.通过测量不同背景光强下TiO2纳晶薄膜电极的电子扩散系数研究电子输运过程.应用HCl化学处理方法明显增大了电子扩散系数,改善了电子在TiO2纳晶薄膜电极中的输运性能.  相似文献   

3.
借助电化学阻抗谱(EIS)和强度调制光电流谱(IMPS)/强度调制光电压谱(IMVS)技术, 采用不同纳米TiO2多孔薄膜对电极研究了染料敏化太阳电池(DSC)内部2个主要电荷输运过程的内在联系, 并探讨了载Pt材料对DSC界面动力学过程及电池宏观性能的影响机理. 借助等效电路模型分析了基于不同对电极材料电池的填充因子变化原因. 结果表明, 对电极材料的电极电荷交换过程制约光阳极膜内电子传输, 进而影响电池光伏性能; 同时对电极催化反应速率主要与催化剂活性、 载Pt材料电导率和催化反应面积有关.  相似文献   

4.
用复合电沉积方法制备了(Ni-Mo)/TiO2薄膜电极,以扫描电子显微镜(SEM)、X射线衍射(XRD)、拉曼光谱(Raman Spectra)和紫外-可见漫反射光谱(DRS)对薄膜的表面形貌、晶相结构和光谱特性进行了表征,在负偏压和可见光作用下,以罗丹明B为模拟污染物研究了薄膜的光电催化性能.采用电化学技术和向溶液中加入活性物种捕获剂的方法对薄膜光电催化降解机理进行了探索.结果表明:(Ni-Mo)/TiO2薄膜是由粒径为50~100 nm的TiO2纳米粒子相和纳米晶Ni-Mo固溶体相构成的复合薄膜.薄膜具有较高的光电催化活性,在-0.4 V偏压和可见光照射下反应60 min,复合薄膜光电催化罗丹明B(c=5 mg/L)的降解率是多孔TiO2(P25)/ITO纳米薄膜的1.56倍.复合薄膜电极中Ni-Mo纳米晶合金对溶解氧和激发电子还原反应的催化作用是光电催化降解活性提高的重要原因.通过调节外加偏压,可以控制电极溶液界面间染料与活性氧化物种的存在形式及其相互作用,是研究可见光催化降解反应历程的有效方法.在负偏压和可见光作用下,羟基自由基和染料正离子自由基对染料的光电催化降解有决定性作用.  相似文献   

5.
本文通过设计一种特殊的电池结构,动态改变电解液与导电玻璃(Tc0)的接触面积,固定Ti02薄膜面积,将TCO/OL解液界面与TiO2/电解液界面两种复合途径进行区分,从实验和理论两方面研究了复合途径变化对染料敏化太阳电池(DSC)性能的影响.采用电化学阻抗谱(EIS)表征界面电荷交换过程,研究了不同途径在复合中的作用机理.通过单色光下,1-V性能测试,对不同界面复合主导下的DSC二极管特性进行数值分析,探讨了复合过程中界面电荷交换变化对光电压(‰)的影响.研究结果表明,高光强下(Voc=700mV)改变TCO/电解液接触面积对复合影响不明显,DSC电子复合主要经由TiO2/电解液界面,电池具有明显的二极管特征;而弱光下(Voc〈400mV)增加TCO/电解液接触面积将使复合大幅增加,此时电荷交换由TCO/电解液界面主导,电池填充因子大幅降低,整流作用减弱.由于TCO/OL解液界面电荷交换明显慢于TiO2/电解液界面,通过同一电池一定光强范围内的光电压变化对比发现,高光强下光电压变化较慢,而弱光下光电压变化较快.  相似文献   

6.
氧化铈基催化材料在催化反应中存在显著的晶面效应,为了在分子尺度上理解其催化化学,需要可控合成具有明确表面结构的氧化铈.因此,我们研究了Pt(111)上氧化铈纳米结构和薄膜的生长.人们通常使用金属-氧化物之间的强相互作用来解释Pt/CeO_x催化剂上的催化过程,然而对于Pt与CeO_x之间的强相互作用仍旧缺乏原子尺度上的了解.我们的结果表明, Pt与氧化铈之间的相互作用可以影响氧化铈的表界面结构,这可能会进而影响Pt/CeO_x催化剂的性质.在Pt(111)上生长的氧化铈薄膜通常暴露CeO_2(111)表面.我们发现Pt(111)表面厚度在三层以内的氧化铈薄膜,其结构是高度动态且随着退火温度升高而变化的,这种动态结构变化可归因于Pt和氧化铈间的界面电子作用.当氧化铈薄膜的厚度增大到三层以上,其负载的氧化铈团簇开始表现出迥异于三层以下氧化铈纳米岛的优异的热稳定性,表明Pt与CeO_x之间的界面电子作用主要影响厚度在三层以内的氧化铈纳米结构.采用常规的反应沉积方法难以获得完全覆盖Pt(111)衬底的规整氧化铈薄膜,而我们通过采取一种两步的动力学限制生长方法,制备出了完全覆盖Pt(111)衬底的氧化铈薄膜.对于Pt(111)上厚度约为3-4层的氧化铈薄膜,在超高真空中于1000 K退火会导致氧化铈薄膜表面形成CeO_2(100)结构.这是因为高温还原促进了c-Ce_2O_3(100)缓冲层的形成,该缓冲层被Pt的界面电子转移以及相匹配的超晶格所稳定,并进一步成为顶层CeO_2(100)结构生长的模板.进一步在900 K的氧气中处理则可将薄膜CeO_2(100)表面完全转变为CeO_2(111)表面.因此, Pt(111)上氧化铈纳米岛和薄膜所展现的结构动态变化是由Pt-CeO_x界面作用与氧化铈层间作用相互竞争所决定.本研究提供了对氧化铈负载Pt催化剂的原子级理解,虽然Pt/CeO_2催化剂活性增强的原因常被简单归结于界面强相互作用,我们的研究在原子尺度上进一步表明Pt/CeO_2在还原条件下易形成界面Ce_2O_3层.此外,本研究提供了不同晶面二氧化铈模型催化剂的构筑方法,可将对氧化铈晶面效应和Pt/CeO_x催化剂的研究推进到分子尺度.  相似文献   

7.
以偏钨酸铵为钨源、聚乙烯吡咯烷酮为连接剂,采用浸渍提拉法制备了石墨烯-氧化钨复合薄膜,利用X射线衍射(XRD)、扫描电镜(SEM)、透射电镜(TEM)及Raman光谱等方法对复合结构材料进行了表征,并利用光电流测试、交流阻抗谱(EIS)、瞬态光电流谱和强度调制光电流谱等方法,研究复合薄膜电极在光电作用下界面上的载流子转移过程和电荷传输行为.结果表明,组成薄膜的氧化钨纳米颗粒与石墨烯充分复合,光电性能显著提高;与石墨烯复合后,薄膜的瞬态时间常数增大,电子-空穴对寿命延长;电子传输时间减少,为纯氧化钨薄膜的47.5%.  相似文献   

8.
芳香氨基酸光敏化瞬态产物的光谱学及动力学表征   总被引:4,自引:0,他引:4  
运用KrF激光闪光光解瞬态吸收光谱 ,以丙酮为光敏剂 ,研究了水溶液中芳香氨基酸的光化学反应 .通过动力学分析和猝灭实验 ,鉴别了光化学反应过程中的瞬态产物 ,获取了激发三重态的瞬态吸收光谱及动力学参数 .在丙酮存在下 ,色氨酸(Trp)和酪氨酸 (Tyr)的水溶液光解 ,分别观察到Trp激发三重态、N中心色氨酸自由基 (Trp/N·)和酪氨酸的酚氧自由基 (Tyr/O·) ,阐述了二者是丙酮三重态与Trp ,Tyr分别通过三重态 三重态 (T T)激发能转移和电子转移生成 ;苯丙氨酸 (Phe)不能与丙酮三重态进行激发能转移和电子转移 .进一步 ,在色氨酰酪氨酸 (Trp Tyr)敏化光解过程中 ,观察到分子内的电子转移 ,即Trp/N· Tyr→Trp Tyr/O·自由基的生成过程 .  相似文献   

9.
研究了PS PMMA的共混物溶液溶剂蒸发成膜时的基板界面效应 .利用扫描电子显微镜 (SEM)研究了PS PMMA(5 5 ) (W W) THF高分子共混物溶液在不同基板上通过溶剂挥发成膜的相形态结构 .通过FTIR及ATR FTIR检测了共混物薄膜及其表面的共混组成 .研究结果表明 ,成膜基板对高分子共混物溶液成膜后的相形态有很重要的影响 .控制共混物溶液体系成膜过程中的动力学因素 ,可以调控出所设想的各种复杂的相结构形态  相似文献   

10.
通过Monte Carlo模拟结合原始路径分析(PPA)的方法,阐述了缠结高分子薄膜的界面动力学与缠结程度的关系.研究发现,以吸附势能的临界值εwc≈-0.6 kBT附近为界,当墙壁-高分子作用势能从弱吸引到强排斥变化时,界面层中的链移动快于中心层,只有当墙壁的吸引作用增强到一定程度时,界面层中的链移动才会慢于中心层.界面动力学受到促进或阻碍可能与界面层和中心层的缠结程度直接相关:界面层的缠结程度保持在本体水平上基本不变;中心层的缠结程度在强吸引表面上低于界面层,而在弱吸引和排斥表面上高于界面层.此外,中心层和界面层中高分子链受限程度的变化对薄膜界面动力学行为的转变产生一定影响.对于薄膜中链密度分布情况随墙壁-高分子作用势能变化的分析为相关的物理化学机制提供了理论依据.  相似文献   

11.
The performances of electron-transport-layer (ETL)-free perovskite solar cells (PSCs) are still inferior to ETL-containing devices. This is mainly due to severe interfacial charge recombination occurring at the transparent conducting oxide (TCO)/perovskite interface, where the photo-injected electrons in the TCO can travel back to recombine with holes in the perovskite layer. Herein, we demonstrate for the first time that a non-annealed, insulating, amorphous metal oxyhydroxide, atomic-scale thin interlayer (ca. 3 nm) between the TCO and perovskite facilitates electron tunneling and suppresses the interfacial charge recombination. This largely reduced the interfacial charge recombination loss and achieved a record efficiency of 21.1 % for n-i-p structured ETL-free PSCs, outperforming their ETL-containing metal oxide counterparts (18.7 %), as well as narrowing the efficiency gap with high-efficiency PSCs employing highly crystalline TiO2 ETLs.  相似文献   

12.
应用分子动力学模拟软件Materials Studio构建SU-8光刻胶与Ni基底的界面结构,研究后烘温度对界面结合性的影响.结合工艺中所采用的后烘温度,模拟计算了338~368K时Ni基底上SU-8胶的交联反应,在经过反复的能量最小化和分子动力学模拟后,对最终得到的平衡结构进行了界面结合能的计算.计算结果表明界面结合能随着后烘温度的升高而增大,在368K时结合能达到最大值,说明此时界面结合最好.对分子体系进行了能量分析,结果表明界面分子间的范德华力作用能是影响界面结合的主要因素.对体系界面原子间进行了径向分布函数分析,发现范德华力作用范围内(0.31~0.60nm)出现两组Ni—O的强峰,也证实了上述结论。  相似文献   

13.
21世纪以来,随着各学科之间的交叉渗透,化学工程的研究对象越来越复杂,界面传递对多相化工过程的影响越来越显示出它的重要性,传统的传递模型已经很难对界面复杂动态的传递行为进行定量描述.本文应用线性非平衡态热力学理论,对传统物质传递模型进行描述,分析界面传递过程速率,强化的三个因素:界面传质系数K、传递截面积A、界面化学位梯度△u.以含钾化合物作为模型体系,基于非平衡热力学原理建立了描述和预测固一液界面处介质传递速率的模型,并建立了描述其溶解速率的通用模型和测定钾离子动力学数据的实验方法,通过分析探讨了多相过程速率强化的途径.  相似文献   

14.
A new electrochemical method for studying the electron transfer (ET) at the oil (O)/water (W) interface (or the liquid/liquid) interface has been devised, in which the O- and W-phases are separated by an electron conductor (EC; e.g. Pt). For the EC separating O–W (ECSOW) system, the ET across the EC phase can be observed voltammetrically in a similar manner to the O/W interface, however, no ion-transfer (IT) process can be taken place. Although the ECSOW system is thermodynamically equivalent to the corresponding O/W interface, they may be different from a kinetic viewpoint. In practice, the cyclic voltammograms obtained with the nitrobenzene NB/W interface and the ECSOW system in the presence of ferrocene in NB and hexacyanoferrate in W have shown quite different features, when the concentrations of both redox species are lower. The voltammograms for the NB/W interface have strongly supported the IT mechanism which involves an interfacial transfer of ferricenium ion. Also, the ECSOW system has been shown to be promising for clarification of complicated charge-transfer processes involving biological compounds such as l-ascorbic acid.  相似文献   

15.
16.
The interaction of an excess electron with a polar molecular environment is well known as electron solvation. This process is characterized by an energetic stabilization and by changes of the electronic spatial extent due to screening of the localized charge through molecular rearrangement. At metal–ice interfaces we photo-inject delocalized electrons from the metal substrate into adsorbed ice layers and analyze the ultrafast dynamics of electron transfer, localization and solvation by femtosecond time- and angle-resolved two-photon photoemission spectroscopy. To acquire further understanding of the individual steps of the complex process we vary the interfacial structure. The substrate is changed between Cu(1 1 1) and Ru(0 0 1) and the electron dynamics in ice islands are compared to closed D2O layers. Contrasting crystalline and amorphous ice we found that electron solvation is mediated through electron localization at favorable structural sites, which occurs very efficiently in amorphous ice, but is less likely in a crystalline layer. Next, we find that in an open ice structure like ice islands the energetic stabilization due to electron solvation proceeds at a rate of 1 eV/ps which is three times faster than in a closed ice layer. We attribute this behavior to differences in the molecular coordination, which determines the molecular mobility and, thus, the transfer rate of electronic energy to solvent modes. The substrate’s electronic structure, on the other hand, is important to understand the transfer rates from electrons in ice back to the metal. First experiments on trapped electrons in crystalline ice underline the potential to study electron solvation not only during the equilibration process, but also in quasi-static conditions, where we find that the stabilization continues, although at much weaker rates.  相似文献   

17.
Surface-modified gold nanorods (Au NRs) with 1,2-dipalmitoyl- sn-glycero-3-phosphothioethanol (DPPTE) were synthesized, and their self-assembled structures on a silicon substrate were observed using a scanning electron microscope (SEM). The Au NR-DPPTE complex formed characteristic one- and two-dimensional self-assemblies induced by intermolecular interactions of surface-anchored lipids via simple drying process. The interparticle distance between neighboring NRs was uniform at around 5.0 nm, which was consistent with the thickness of the lipid bilayer. Furthermore, we observed the anisotropic configurations of the NR complex, preferentially oriented in a lateral or perpendicular fashion, in a two-dimensional assembled structure dependent on the interfacial hydrophilicity or hydrophobicity of the silicon surface.  相似文献   

18.
The chiral complexation of bilirubin (BR) with bovine and human serum albumin (BSA and HSA), and the aggregation of the complexes at the heptane+chloroform(5:1)/water interface were studied via UV/Vis absorption and circular dichroism (CD) measurements in combination with the centrifugal liquid membrane (CLM) method. The interfacial adsorptivities of BR, BSA and their complexes were also studied by performing interfacial tension measurements at the interface. The changes in the absorbances and the induced CD amplitudes of the interfacial BR-BSA complex provided insights into the mechanism of the conformational enantioselective complexation at the interface, and indicated that the chiral conversion induced by the complexation with BSA was from the P(+) form to the M(-) form of BR. The broadening of the 450 nm band and the appearance of a new shoulder at 474 nm further supported the formation of aggregates of the complexes at the interface. The dependence of the CD amplitude on the molar ratio of BSA to BR revealed that the composition of the complex was 1:1 BSA:BR. The probable interfacial reaction scheme was proposed, and the affinity constant of BR-BSA at the interface was found to be 4.67 x 10(8) M(-2). The interfacial complexation and aggregation of BR and HSA were weaker than those of the BR-BSA complex due to the different BR binding positions adopted for BSA and HSA and the binding effect of chloroform.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号