首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The effect of chloroform on the chiroselective reaction between bilirubin (BR) and bovine serum albumin (BSA) at the interface between a heptane phase (including CHCl(3)) and an aqueous phase was investigated by means of the absorption and circular dichroism (CD) spectroscopies combined with a centrifugal liquid membrane (CLM) method, and a CLM microscopic fluorescence spectroscopy as well. The observed absorption, CD and fluorescence spectra disclosed the interfacial complexation process of BR with BSA for the first time, suggesting further aggregation of the BR-BSA complex at the interface. It was noticed more that, due to the formation of the chiral aggregates of BR-BSA complex, the interfacial CD signal of M(-) conformation of BR was appeared gradually. However, higher content of CHCl(3) in the organic phase, resulting in the increase in fluorescence intensity, evidently affected the formation of the aggregates of the complex at the interface. The addition of extra CHCl(3) to the interfacial aggregates induced temporal inversion of CD sign of BR, which should be caused by the local structural change of BSA brought about by the specific solvation of CHCl(3).  相似文献   

2.
Resonance Raman spectroscopy assisted by centrifugal liquid membrane/circular dichroism (CLM-CD) and UV/Vis absorption spectroscopies was applied to measure the binding state of bilirubin (BR) in the complex with bovine serum albumin (BSA) formed at a heptane/water interface. The bisignate Cotton effects in the interfacial CD spectra and the red shift and linewidth increase of the BR absorption band around 450 nm indicated the formation of the BR-BSA complex at the interface and the chiral conversion of BR molecules in the aggregates. The resonance Raman spectra of BR observed at the interface suggested that the interfacial BR-BSA complex formed during the initial 15 min after the contact of the two phases had a similar structure with that in solution, but after 15 min were forming aggregates coexisting with solid micro-particles. These experimental results strongly suggested that the chiral interconversion of BR from (P+) conformation to (M-) conformation in the interfacial complex was accompanied by aggregation of the BR-BSA complexes. In the present study, resonance Raman microscopic spectrometry was proved to be highly useful for characterizing the solid like aggregate formed at the liquid/liquid interface.  相似文献   

3.
Bilirubin (BR) aggregating at liquid/liquid interface was firstly detected by Fourier transform infrared (FTIR) imaging/spectroscopy combining with ultraviolet-visible (UV/Vis) absorption spectra. In the UV/Vis absorption spectra of BR aggregate, a new shoulder appeared at 474 nm, and BR absorption maximum underwent red shift from 450 nm to a longer wavelength at 497 nm, which indicates that BR aggregate was formed at the interface. Meanwhile, the BR molecule structure changed or conformation torsion, that is, the increase in orbit overlap or dihedral angle and the enhancement of exciton coupling. In the study of FTIR imaging/spectroscopy, the hydrogen bond-sensitive infrared bands of BR aggregate showed remarkable changes in band shift and intensity compared with those of BR powder, suggesting that the intramolecular hydrogen bonds broke out and internal structure changed. These new findings will be helpful for understanding of the BR molecular interaction, transportation, complex with serum albumin and metal ions, and the effect of BR aggregating on biomembrane and human tissues.
Figure
Schematic representation of the FTIR spectroscopic imaging for interfacial BR aggregation  相似文献   

4.
The complexation mechanism and aggregate formation of bis[2-(5-bromo-2-pyridylazo)-5-diethylaminophenolate] iron(II) and iron(III) complexes at the heptane-water interface were studied spectrophotometrically by the high-speed stirring method and the centrifugal liquid membrane method. Furthermore, the reduction process of the Fe(III) complex with ascorbic acid at the interface was spectrophotometrically observed. The chemical compositions of the interfacial aggregate of complexes have been proved by the X-ray photoelectron spectroscopy. The aggregation of the complex at the interface was observed as a red-shifted, very strong and narrower absorption band with respect to the absorption band of the monomer complex. The aggregate of Fe(III) complex showed more shifted spectrum than that of Fe(II) complex, which proposed the larger aggregation number of Fe(III) aggregate (n = 8) than that of Fe(II) aggregate (n = 3). The obtained rate constants of interfacial aggregation were smaller than rate constants of interfacial monomer complexation, because the formation of aggregate required the assembly of the monomers.  相似文献   

5.
The interaction between bromocresol purple (BCP) and bovine serum albumin (BSA)/porcine serum albumin (PSA) was investigated both in the absence and presence of bilirubin (BR) using absorption/absorption difference spectroscopy. A significant red shift in the absorption maxima of BCP accompanied by a decrease in absorbance was indicative of BCP binding to albumin. The titration of BSA and PSA with BCP using absorption difference spectroscopy and analysis of results by Benesi-Hildebrand equation yielded the values of association constant, K as 9.9+/-0.9x10(4)Lmol(-1) and 4.1+/-0.3x10(4)Lmol(-1) for BSA and PSA, respectively. The differential extinction coefficient (Deltaepsilon) of 34,484M(-1)cm(-1) at 615nm and 41,870M(-1)cm(-1) at 619nm were estimated for BSA and PSA, respectively. Decrease in (DeltaAbs.)(615nm) of BCP-BSA complex with the increase in ionic strength suggested the role of hydrophobic interactions in the binding phenomenon. A significant blue shift in the absorption maxima and change in (DeltaAbs)(lambdamax) values of BR-albumin complexes upon addition of increasing concentrations of BCP revealed the BR displacing action of BCP on albumin molecule.  相似文献   

6.
The interaction of the amphiphilic drugs, i.e., amitriptyline hydrochloride (AMT) and promethazine hydrochloride (PMT), with serum albumins (i.e., human serum albumin (HSA) and bovine serum albumin (BSA)), has been examined by the various spectroscopic techniques, like fluorescence, UV-vis, and circular dichroism (CD). Fluorescence results indicate that in case of HSA-drug complexes the quenching of fluorescence intensity at 280 nm is less effective as compared to at 295 nm while in case of BSA-drug complexes both have almost same effect and for most of drug-serum albumin complexes there is only one independent class of binding. For all drug-serum albumin complexes the quenching rate constant (K(q)) values suggest the static quenching procedure. The UV-vis results show that the change in protein conformation of PMT-serum albumin complexes was more prominent as compared to AMT-serum albumin complexes. The CD results also explain the conformational changes in the serum albumins on binding with drugs. The increase in α-helical structure for AMT-serum albumin complexes is found to be more as compared to PMT-serum albumin complexes. Hence, the various spectroscopic techniques provide a quantitative understanding of the binding of amphiphilic drugs with serum albumins.  相似文献   

7.
The binding of nalidixic acid (NA) with human and bovine serum albumin (HSA and BSA) in buffer solution at pH 7.4 was investigated using circular dichroism (CD), UV absorption and fluorescence spectroscopy. Global analysis of multiwavelength spectroscopic data afforded the equilibrium constants of the most stable noncovalent drug/protein adducts of 1:1 and 2:1 stoichiometry and their individual CD, UV absorption, and fluorescence spectra. The primary binding site of the drug was located in subdomain IIIA (Sudlow Site II), whereas the secondary one was assigned to subdomain IIA. Conformational and CD calculations afforded the binding geometries. In the complexes, the fluorescence of the protein was strongly quenched by energy transfer and that of the drug was suppressed by electron transfer. Laser flash photolysis at 355 nm evidenced the formation of a radical pair consisting of a tyroxyl radical (lambdamax = 410 nm) and a reduced nalidixate anion radical NA(2-)* (lambdamax = 640 nm) with quantum yield of 0.4-0.5. Strong evidence was obtained that the process that involves Tyr411 in HSA (Tyr409 in BSA). A further transient with lambdamax approximately 780 nm observed in HSA was attributed to oxidation of the -(S200-S246)- bridge upon electron transfer to NA(-)*. Decay of the confined radical pairs occurred with rates approximately 10(7) s(-1). Formation of covalent drug-protein adducts in mixtures irradiated at lambdairr> 324 nm was proved using HPLC with fluorescence detection.  相似文献   

8.
The interaction of indocyanine green(ICG) with human serum albumin(HSA) was investigated via various spectrometric(UV-visible, fluorescence and circular dichroism) techniques. The experimental results indicate that the interaction of ICG with HSA depends on the values of R(R is defined as the molar ratio of HSA to ICG). The interaction of ICG with HSA can form two complexes with intrinsic binding constants(Ka) of 2.97×105(R≤2) and 2.63×104(R>2), respectively. The fluorescence and induced CD(ICD) spectra of ICG demonstrate that binding the first mole of HSA to ICG can form a chiral ICG-HSA complex with strong fluorescence emission, and the chirality and fluorescence of ICG-HSA complex can be significantly reduced by adding another mole of HSA to ICG. Furthermore, although both ICG and ICG-HSA complexes followed an energy-dependent endocytosis process to enter living cells, the cellular uptaken dynamic mechanism of ICG was significantly affected by the HSA conjugation.  相似文献   

9.
The interactions of two drugs, cryptotanshinone (CTS) and icariin, with bovine serum albumin (BSA) and human serum albumin (HSA) have been investigated using multiple spectroscopic techniques under imitated physiological conditions. CTS and icariin can quench the fluorescence intensity of BSA/HSA by a static quenching mechanism with complex formation. The binding constants of CTS–BSA, CTS–HSA, icariin–BSA and icariin–HSA complexes were observed to be 1.67 × 104, 4.04 × 104, 4.52 × 105 and 4.20 × 105 L·mol?1, respectively at 298.15 K. The displacement experiments suggested icariin/CTS are primarily bound to tryptophan residues of the proteins within site I and site II. The thermodynamic parameters calculated on the basis of the temperature dependence of the binding constants revealed that the binding of CTS–BSA/HSA mainly depends on van der Waals interaction and hydrogen bonds, and yet the binding of icariin–HSA/BSA strongly relies on the hydrophobic interactions. The binding distances between BSA/HSA and CTS/icariin were evaluated by the Föster non-radiative energy transfer theory. The results of synchronous fluorescence, 3D fluorescence, FT-IR and CD spectra indicates that the conformations of proteins were altered with the addition of CTS or icariin. In addition, the effects of some common ions on the binding constants of CTS/icariin to proteins are also discussed.  相似文献   

10.
The interaction between juglone at the concentration range of 10–110 µM and bovine serum albumin (BSA) or human serum albumin (HSA) at the constant concentration of 11 µM was investigated by fluorescence and UV absorption spectroscopy under physiological-like condition. Performing the experiments at different temperatures showed that the fluorescence intensity of BSA/HSA was decreased in the presence of juglone by a static quenching mechanism due to the formation of the juglone–protein complex. The binding constant for the interaction was in the order of 103 M?1, and the number of binding sites for juglone on serum albumins was determined to be equal to one. The thermodynamic parameters including enthalpy (ΔH), entropy (ΔS) and Gibb’s free energy (ΔG) changes were obtained by using the van’t Hoff equation. These results indicated that van der Waals force and hydrogen bonding were the main intermolecular forces stabilizing the complex in a spontaneous association reaction. Moreover, the interaction of BSA/HSA with juglone was verified by UV absorption spectra and molecular docking. The results of synchronous fluorescence, UV–visible and CD spectra demonstrated that the binding of juglone with BSA/HSA induces minimum conformational changes in the structure of albumins. The increased binding affinity of juglone to albumin observed in the presence of site markers (digoxin and ibuprofen) excludes IIA and IIIA sites as the binding site of juglone. This is partially in agreement with the results of molecular docking studies which suggests sub-domain IA of albumin as the binding site.  相似文献   

11.
Conformational changes in the bulk solution and at the air-aqueous interface of human serum albumin (HSA) induced by changes in concentration of sodium perfluorooctanoate (C(7)F(15)COO(-)Na(+)) were studied by difference spectroscopy, zeta-potential data, and axisymmetric drop shape analysis. zeta-potential was used to monitor the formation of the HSA-C(7)F(15)COO(-)Na(+) complex and the surface charge of the complex. The conformational transition of HSA in the bulk solution was followed as a function of denaturant concentration by absorbance measurements at 280 nm. The data were analyzed to obtain values for the Gibbs energies of the transition in water (DeltaG(0)(W)) and in a hydrophobic environment (DeltaG(0)(hc)) pertaining to saturated protein-surfactant complexes. The conformational changes that surfactants induce in HSA molecules alter its absorption behavior at the air-water interface. Dynamic surface measurements were used to evaluate this behavior. At low [C(7)F(15)COO(-)Na(+)], proteins present three adsorption regimes: induction time, monolayer saturation, and interfacial gelation. When surfactant concentration increases and conformational changes in the bulk solution occur, the adsorption regimes disappear. HSA molecules in an intermediate conformational state migrate to the air-water interface and form a unique monolayer. At high [C(7)F(15)COO(-)Na(+)], the adsorption of denatured molecules exhibits a behavior analogous to that of dilute solutions.  相似文献   

12.
The effect of binding of an oligomeric cationic fluorooxetane surfactant on the interfacial properties of adsorbed gelatin-fluorooxetane complexes has been studied using dynamic surface tension and dilational rheological measurements. Adsorption kinetics of gelatin-fluorooxetane complexes are reminiscent of a mixed (barrier/diffusion limited) process, while the dilational rheological properties of the interface exhibit a strong dependence on surfactant concentration. At low surfactant concentrations, dilational surface moduli as well as phase angles are relatively insensitive to the presence of the fluorooxetane. However, at the critical aggregation concentration of the polymer-surfactant system, there is a sharp increase in the complex modulus. Further increase in the fluorooxetane concentration does not significantly affect the complex modulus. The phase angle, however, does increase with increasing fluorooxetane concentration due to the transport of bound fluorooxetane from the subsurface to the solution-air interface. These results indicate that, at fluorooxetane concentrations exceeding the critical aggregation concentration, the polymer-surfactant complexes adsorb to form cross-linked multilayers at the solution-air interface.  相似文献   

13.
A series of twelve anionic, cationic, and neutral nickel(II) complexes have been synthesized and characterized. The interaction of these complexes with bovine serum albumin (BSA), human serum albumin (HSA), lysozyme (Lyso), and tryptophan (Trp) has been studied using steady-state fluorescence spectroscopy. Dynamic and static quenching constants have been calculated, and the role played in quenching by the ligand and complex charge investigated. The nickel complexes showed selectivity towards the different proteins based on the environment surrounding the Trp residue(s). Only small neutral complexes with hydrophobic ligands effectively quenched protein fluorescence via static quenching, with association constants ranging from 10(2) M(-1) (free Trp) to 10(10) M(-1) (lysozyme), indicating a spontaneous and thermodynamically favorable interaction. The number of binding sites, on average, was determined to be one in BSA, HSA and free Trp, and two in lysozyme.  相似文献   

14.
A complex of physicochemical methods was used to study the aggregation characteristics of an imidazolium-containing amphiphile and its ability for complex formation with bovine serum albumin (BSA). Tensiometry showed that adding BSA to the surfactant decreases the aggregation threshold of the system by a factor of 50. Dynamic light scattering established, that the size of the surfactant–BSA complexes depends on the size of the polypeptide (6–10 nm) and is independent on the concentrations of the surfactant and BSA. The Stern?Volmer constants and surfactant?protein binding constants were calculated from fluorescence spectroscopy data.  相似文献   

15.
In the present investigation, an attempt has been made to study the interaction of phenosafranin (PSF), a cationic phenazinium dye with the transport proteins, bovine serum albumin (BSA) and human serum albumin (HSA), employing steady-state and time-resolved fluorometric and circular dichroism (CD) techniques. The photophysical properties of the dye are altered on binding with the serum proteins. An explicit study with respect to the modification of the fluorescence and fluorescence anisotropy upon binding, effect of denaturant, fluorescence lifetime and CD measurements reveal that the dye binds to both BSA and HSA with almost the same affinity. Far-UV CD spectra indicate a decrease in the percentage of α-helicity only for BSA upon binding with the probe. Near-UV CD responses indicate an alteration in the tertiary structure of both the transport proteins because of binding.  相似文献   

16.
Interfacial properties of N-nitrosodiethylamine/bovine serum albumin (NDA/BSA) complexes were investigated at the air-water interface. The interfacial behavior at the chloroform-water interface of the interaction product of phospholipid 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), dissolved in the chloroform phase, and NDA/BSA complex, in the aqueous phase, were also analyzed by using a drop tensiometer. The secondary structure changes of BSA with different NDA concentrations were monitored by circular dichroism spectroscopy at different pH and the NDA/BSA interaction was probed by fluorescence spectroscopy. Different NDA/BSA mixtures were prepared from 0, 7.5 x 10(-5), 2.2 x 10(-4), 3.7 x 10(-4), 5 x 10(-4), 1.6 x 10(-3), and 3.1 x 10(-3) M NDA solutions in order to afford 0, 300/1, 900/1, 1 500/1, 2 000/1, 6 000/1, and 12 500/1 NDA/BSA molar ratios, respectively, in the aqueous solutions. Increments of BSA alpha-helix contents were obtained up to the 2 000/1 NDA/BSA molar ratio, but at ratios beyond this value, the alpha-helix content practically disappeared. These BSA structure changes produced an increment of the surface pressure at the air-water interface, as the alpha-helix content increased with the concentration of NDA. On the contrary, when alpha-helix content decreased, the surface pressure also appeared lower than the one obtained with pure BSA solutions. The interaction of DPPC with NDA/BSA molecules at the chloroform-water interface produced also a small, but measurable, pressure increment with the addition of NDA molecules. Dynamic light scattering measurements of the molecular sizes of NDA/BSA complex at pH 4.6, 7.1, and 8.4 indicated that the size of extended BSA molecules at pH 4.6 increased in a greater proportion with the increment in NDA concentration than at the other studied pH values. Diffusion coefficients calculated from dynamic surface tension values, using a short-term solution of the general adsorption model of Ward and Tordai, also showed differences with pH and the NDA concentration. Both, the storage and loss dilatational elastic modulus were obtained at the air-water and at the chloroform-water interfaces. The interaction of NDA/BSA with DPPC at the chloroform-water produced a less rigid monolayer than the one obtained with pure DPPC (1 x 10(-5) M), indicating a significant penetration of NDA/BSA molecules at the interface. At short times and pH 4.6, the values of the storage elastic modulus were larger and more sensible to the NDA addition than the ones at pH 7.1 and 8.4, probably due to a gel-like network formation at the air-water interface.  相似文献   

17.
The surface speciation of phosphate has been evaluated with surface complexation modeling using an interfacial charge distribution (CD) approach based on ion adsorption and ordering of interfacial water. In the CD model, the charge of adsorbed ions is distributed over two electrostatic potentials in the double-layer profile. The CD is related to the structure of the surface complex. A new approach is followed in which the CD values of the various surface complexes have been calculated theoretically from the geometries of the surface complexes. Molecular orbital calculations based on density functional theory (MO/DFT) have been used to optimize the structure of a series of hydrated surface complexes of phosphate. These theoretical CD values are corrected for dipole orientation effects. Data analysis of the PO4 adsorption, applying the independently derived CD coefficients, resolves the presence of two dominant surface species. A nonprotonated bidentate (B) complex is dominant over a broad range of pH values at low loading (< or =1.5 micromol/m(2)). For low pH and high loading, a strong contribution of a singly protonated monodentate (MH or MH-Na) complex is found, which differs from earlier interpretations. For the conditions studied, the doubly protonated bidentate (BH2) and monodentate (MH2) surface complexes and the nonprotonated monodentate (M) complex are not significant contributors. These findings are discussed qualitatively and quantitatively in relation to published experimental in-situ CIR-FTIR data and theoretical MO/DFT-IR information. The relative variation in the peak intensities as a function of pH and loading approximately agrees with the surface speciation calculated with the CD model. The model correctly predicts the proton co-adsorption of phosphate binding on goethite and the shift of the IEP at low phosphate loading (< or =1.5 micromol/m(2)). At higher loading, it deviates.  相似文献   

18.
胆红素有序分子膜的行为研究   总被引:3,自引:0,他引:3  
研究了不同亚相表面胆红素(BR)单分子膜和LB膜的性质,讨论了胆红素分子在有序分子膜中的堆积密度、分子伸展和金属离子配位。在气-水界面,BR与金属离子的配位导致BR单分子截面积、崩溃压和可见紫外光谱的变化。原子力显微镜表明BR-Cu单分子膜的厚渡为1.23 nm。  相似文献   

19.
Bovine (BSA) and human (HSA) serum albumins are frequently used in biophysical and biochemical studies since they have a similar folding, a well known primary structure, and they have been associated with the binding of many different categories of small molecules. One important difference of BSA and HSA is the fact that bovine albumin has two tryptophan residues while human albumin has a unique tryptophan. In this work results are presented for the interaction of BSA and HSA with several ionic surfactants, namely, anionic sodium dodecyl sulfate (SDS), cationic cethyltrimethylammonium chloride (CTAC) and zwitterionic N-hexadecyl-N,N-dimethyl-3-ammonium-1-propanesulfonate (HPS), as monitored by fluorescence spectroscopy of intrinsic tryptophans and circular dichroism spectroscopy. On the interaction of all three surfactants with BSA, at low concentrations, a quenching of fluorescence takes place and Stern-Volmer analysis allowed to estimate their 'effective' association constants to the protein: for SDS, CTAC and HPS at pH 7.0 these constants are, respectively, (1.4+/-0.1) x 10(5) M(-1), (8.9+/-0.1) x 10(3) M(-1) and (1.4+/-0.1) x 10(4) M(-1). A blue shift of maximum emission is observed from 345 to 330 nm upon surfactant binding. Analysis of fluorescence emission spectra allowed to separate three species in solution which were associated to native protein, a surfactant protein complex and partially denatured protein. The binding at low surfactant concentrations follows a Hill plot model displaying positive cooperativity and a number of surfactant binding sites very close to the number of cationic or anionic residues present in the protein. Circular dichroism data corroborated the partial loss of secondary structure upon surfactant addition showing the high stability of serum albumin. The interaction of the surfactants with HSA showed an enhancement of fluorescence at low concentrations, opposite to the effect on BSA, consistent with the existence of a unique buried tryptophan residue in this protein with considerable static quenching in the native state. The effects of surfactants at low concentrations were very similar to those of myristic acid suggesting a non specific binding through hydrophobic interaction modulated by eletrostatic interactions. The changes in the vicinity of the tryptophan residues are discussed based on the recently published crystallographic structure of HSA myristate complex (S. Curry et al., Nat. Struct. Biol. 5 (1998) 827).  相似文献   

20.
The interactions between riboflavin (RF) and human and bovine serum albumin (HSA and BSA) were studied by using absorption and fluorescence spectroscopic methods. Intrinsic fluorescence emission spectra of serum albumin in the presence of RF show that the endogenous photosensitizer acts as a quencher. The decrease of fluorescence intensity at about 350 nm is attributed to changes in the environment of the protein fluorophores caused by the ligand. The quenching mechanisms of albumins by RF were discussed. The binding constants and binding site number were obtained at various temperatures. The distance between albumins and RF in the complexes suggests that the primary binding site for RF is close to tryptophan residue (Trp214) of HSA and Trp212 of BSA. The hydration process of albumins has also been discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号