首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   22篇
  国内免费   31篇
化学   32篇
物理学   23篇
  2018年   1篇
  2017年   1篇
  2016年   2篇
  2015年   1篇
  2014年   2篇
  2013年   7篇
  2012年   7篇
  2011年   4篇
  2010年   4篇
  2009年   6篇
  2008年   4篇
  2007年   4篇
  2006年   1篇
  2005年   10篇
  2003年   1篇
排序方式: 共有55条查询结果,搜索用时 750 毫秒
1.
硫化铟是一种稳定、低毒性的半导体材料. 本文采用低成本的化学浴沉积方法制备了硫化铟敏化太阳电池, X射线衍射(XRD)、光电子能谱(XPS)和扫描电镜(SEM)结果表明形成了硫化铟敏化的二氧化钛薄膜. 化学浴沉积温度对所得硫化铟敏化薄膜的形貌有显著的影响, 进而影响电池性能. 温度太低时, 化学浴沉积反应速率太低, 只发生少量沉积; 温度太高时, 化学浴沉积反应速率较快, 硫化铟来不及沉积到二氧化钛多孔薄膜内部. 当温度在40℃时, 硫化铟沉积均匀性最好, 薄膜的光吸收性能最佳, 电池的短路电流最大, 另外, 填充因子达到最佳, 为65%, 电池总体光电转换效率为0.32%.  相似文献   
2.
报道了一种基于硫族金属复合物N4H9Cu7S4前驱体溶液制备硫化亚铜对电极的新方法. 分别制备了TiO2纳米颗粒多孔薄膜和TiO2纳米棒阵列结构的光阳极, 并在此基础上研究了基于硫化亚铜对电极的CdS/CdSe量子点敏化太阳电池的光电性能, 同时结合电化学阻抗技术考察了硫化亚铜对电极的催化性能. 结果表明: 与铂电极相比, 本方法制备的硫化亚铜电极对多硫电解质具有更高的催化活性, 所组装的CdS/CdSe量子点敏化太阳电池具有更优的光伏性能.  相似文献   
3.
基于量子限域效应的新型太阳电池——量子点敏化太阳电池(QD-SSCs),由于其最大理论转化效率超过了传统的Shockley-Queisser极限效率,已经成为目前最具研究潜力的太阳电池之一。本文综述了近几年来QD-SSCs领域的研究进展,主要从半导体氧化物纳米材料,特别是其低维纳米结构下的特殊性能;金属硫族化合物纳米晶;电解质;对电极等几个方面评述了电池材料的研究进展。另外,从量子点材料的制备和组装方面简述了目前电池光阳极的研究情况,并介绍了提高量子点光敏化性能的几个新途径。最后,从开路电压和短路电流角度分析了影响电池性能的几个关键因素,并对QD-SSCs今后的发展进行了展望。  相似文献   
4.
纳米TiO2由于具有合适的禁带宽度、良好的光电化学稳定性、制作工艺简单等特点,目前广泛应用于染料敏化、量子点和钙钛矿等太阳电池中。作为电池的重要组成部分之一,纳米TiO2晶体尺寸、颗粒大小和制备方法等明显影响电池的光伏性能,相关研究工作一直是染料敏化、量子点和钙钛矿等太阳电池方面的重点。本文综述了纳米TiO2作为致密层和骨架层在钙钛矿太阳电池中的应用研究进展,主要讨论了纳米TiO2的不同形貌、制备方法以及结构等对电池光电性能的影响,并针对纳米TiO2在后续对电池性能提升方面进行了展望。  相似文献   
5.
上/下转换技术能将红外光和紫外光能量转换成与工作电池匹配的光谱范围内能量,解决了由于光谱不匹配造成的能量损失,实现拓宽电池的吸收光谱,提高电池的光利用率和转换效率,降低紫外光对电池稳定性的影响。稀土离子由于特殊的能级结构且发光效率高,常作为上/下转换发光材料的中心离子。近年来上转换发光中心主要集中在Er3+,Tm3+等三价离子,敏化中心则为具有特殊能级结构和较长激发态寿命的Yb3+离子。Tb3+,Eu3+,Sm3+等离子由于在紫外光区具有电荷迁移吸收带,易被高能紫外光子激发,量子效率接近100%且发射谱线主要位于可见光区,常被用作下转换发光中心。发光基质多选择声子能量低、透光范围广、易于掺杂的氟化物,并通过水热法制备出结晶度高、粒径小且分布均匀的粉体材料。目前,上/下转换技术应用于DSC的研究越来越受到人们的重视,本文将对上转换和下转换技术在DSC中的应用进行详细阐述,主要介绍上/下转换技术的发展背景,在太阳电池中的应用和方法,详细综述近几年来各类上转换和下转换材料在太阳电池中应用的研究进展,最后对其未来的发展方向进行了展望。  相似文献   
6.
为了改善染料敏化太阳电池内电子的传输复合过程, 研究者尝试不同方法制备或改性TiO2薄膜. 对TiO2薄膜进行后处理, 在其表面引入一层小颗粒层, 是一种有效的方法并被广泛研究. 通过对TiO2薄膜不同时间的电沉积表面修饰, 细致研究了表面修饰后染料敏化太阳电池微观性能的变化机制. 采用阳极氧化法在TiCl3水溶液中对TiO2薄膜进行电沉积后处理, 将溶液pH值调至2.2, 装置的反应速率由恒电位仪控制. 不同沉积时间电池带边移动以及电子传输复合的动力学过程, 借助强度调制光电流谱(IMPS)/强度调制光电压谱(IMVS)和电化学阻抗谱(EIS)等探测技术表征. 研究表明, 电沉积在TiO2薄膜表面引入了大量浅能级陷阱态, 以致电势较高时电容随沉积时间延长增加明显. 不同时间的电沉积表面修饰在TiO2薄膜表面形成了新的小颗粒层并改善了TiO2颗粒间接触, 在改善电子注入及收集过程的同时, 也有效抑制了内部电子复合. IMPS/IMVS结果表明, 电沉积对动力学过程改善的效果受光强影响明显, 弱光下作用更为突出. 此外, 电池开路电压主要受带边移动及内部复合变化影响, 随沉积时间延长, 表面电荷的增多使TiO2薄膜带边逐渐正移, 有效改善了光电流却限制了开路电压的提升. 在适合的电沉积时间下, 电沉积表面修饰可以同时改善光电流和光电压.  相似文献   
7.
选取氧化钐作为包覆材料, 采用浸渍法对已烧结好的纳米TiO2多孔薄膜电极进行修饰, 并将其应用于染料敏化太阳电池中, 研究了纳米级氧化钐包覆层厚度及均匀性对染料敏化太阳电池中电子注入效率和电子复合过程的影响和作用机制. 结果表明, 包覆层厚度对电子注入效率和电子复合具有明显影响, 且电子注入效率和电子寿命随包覆层厚度的增加而呈现相反的变化趋势, 包覆层厚度在0.4 nm以内, 电池性能最好.  相似文献   
8.
采用电化学阻抗谱(EIS)研究了染料敏化太阳电池(DSC)中由导电玻璃、 纳米多孔TiO2薄膜和电解质构成的多相复杂接触界面的电子转移机制和动力学过程. 通过沉积聚合物薄膜简化多相接触界面结构, 根据接触界面结构和电子转移途径的变化, 分析了不同偏压下多相接触界面电子转移机制, 构建与之对应的等效电路, 获得了DSC内部各个主要接触界面的电子转移动力学常数. 结果表明, 通过外加偏压的控制和多相接触界面结构的简化, 可以区别分析多相复杂接触界面电子转移机制与动力学过程.  相似文献   
9.
甲烷是一种在自然界中大量存在的原材料,在取代原油和合成重要化工产品等许多领域具有潜在的应用价值. 然而,由于CH4中C-H键的键能特别大(约~4.5 eV),如何实现甲烷的绿色有效转化在化学化工领域仍然是一个挑战. 本文采用密度泛函理论对Co3O4(001)和(011)晶面活化甲烷C-H键的机理进行了理论研究,得到了如下结论:(1) CH4的C-H键在Co3O4晶面的解离具有很高的活性,只需要克服大约1 eV的能垒;(2)与Co2相连的Co-O离子对是CH4活化的活性位点,其中两个带正负电荷的离子对C-H解离起着协同作用,帮助产生Co-CH3和O-H物种;(3)(011)面的反应活性明显大于(001)面,与实验的观察一致. 本文的计算结果表明,Co3O4纳米晶面对CH4中C-H键的活化表现出明显的晶面效应和结构敏感效应,Co-O离子对活性中心对于活化惰性的C-H键发挥了关键作用.  相似文献   
10.
电沉积处理与染料敏化纳米薄膜太阳电池的优化   总被引:3,自引:0,他引:3       下载免费PDF全文
采用阳极氧化水解法对染料敏化纳米TiO2薄膜太阳电池的光阳极进行不同方式的电沉积优化处理.借助x射线衍射仪对处理后的样品进行分析,通过超高分辨率场发射扫描电子显微镜对导电玻璃以及电沉积处理前后纳米多孔薄膜表面进行了粒径和形貌的扫描.染料敏化太阳电池实验测试结果表明,电沉积处理和修饰后可以明显提高光生电子的收集率,增大短路电流密度,提高电池效率. 关键词: 2')" href="#">纳米TiO2 染料敏化 电沉积 太阳电池  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号