首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
以CuⅡ-[N-(4-vinylbenzyl)]im inod iacetic ac id为功能单体、三甲氧基丙烷三甲基丙烯酸酯为交联剂、甲醇为聚合溶剂,制备了L-扁桃酸的金属配位分子烙印聚合物。用它作为色谱固定相,系统考察了流动相的pH、甲醇含量以及缓冲溶液的浓度对其手性分离能力的影响。在中性或弱碱性(pH 7~9)流动相条件下,L-扁桃酸的金属配位分子烙印聚合物对D,L-扁桃酸的手性分离效果最好;其手性分离能力随流动相中甲醇含量和缓冲溶液浓度的增大而增强。本研究的工作为在极性溶剂中制备高选择性的分子烙印聚合物提供了实践支持。  相似文献   

2.
利用分子烙印技术分离中草药活性组分   总被引:37,自引:0,他引:37  
用非共价法,在极性溶剂中,以丙烯酰胺作功能单体,以强极性化合物槲皮素为模板 ,制备了分子烙印聚合物(MIP). 液相色谱实验表明, MIP 对槲皮素具有特异的亲合性.将此 MIP直接分离银杏叶提取物水解液, 得到主要含模板槲皮素及与槲皮素结构相似化合物山奈 酚两种黄酮的组分.研究证实了MIP技术用于直接分离、提取中草药中具有特定药效化合物的 可行性.  相似文献   

3.
功能单体对分子烙印手性固定相手性拆分能力的影响   总被引:6,自引:0,他引:6  
系统考察了功能单体对非共价分子烙印手性固定相手性分离能力的影响,发现在非共价分子烙印手性固定相的制备中,功能单体与烙印分子之间存在着匹配性。丙烯酰胺可以与氨基酸衍生物的酰胺基团形成较强的氢键作用,碱性功能单体2-乙烯基吡啶则与其羧基形成较离子作用,两者的协同作用使复合功能单体丙烯酰胺+2-乙烯基吡啶对于氨基酸衍生物具有良好的烙印效果。竞争溶剂乙酸对样品与分子固定相间的非共价作用力有较大的影响,增加流动相中的竞争溶剂乙酸的含量,将减弱分子手性固定相与样品的酰胺键和羧基的氢键及离子作用,导致对样品的容量因子、手性选择性α及分离度f/g的减小。  相似文献   

4.
分子烙印聚合物作超临界流体萃取后处理用固体吸附剂   总被引:8,自引:0,他引:8  
利用离线超临界流体萃取与高效毛细管电泳相结合,分析了标准添加样品中的除草剂(2,4-二氯苯氧乙酸(2,4-D)),探讨了温度、压力和改性剂对萃取的影响,考察了在不同条件下合成的2,4-D为烙印分子的子烙印聚合物对2,4-D在不同极性溶剂中的吸附能力,并将分子烙印聚合物作为超临界流流体萃取后处理用固体吸附剂,结果表明,在甲醇和水的混合极性溶剂中制备的分子烙印聚合物对提高分析选择性的效果最佳。  相似文献   

5.
分子烙印聚合物固定相分离咖啡因和茶碱的研究   总被引:13,自引:0,他引:13  
分子烙印是一种新兴的分子识别技术,利用该技术可制备对烙印分子具有“预定”识别能力的高分子聚合物,即分子烙印聚合物(MIP),从而可以对性质和组成相近的组如对映体等进行分离^[1,2],咖啡因与茶碱的分子烙印聚合物的制备以及二者分析已有报道^[3-9],但存在两种完全相反的结论。一种观点认为,即使以咖啡因为烙印分子,所制备的聚合物对咖啡因分子的选择性吸附能力也小于茶碱^[3-6]。而另一种观点则认为,在一定条件下,如以咖啡因分子为烙印分子的烙印聚合物对咖啡因分子具有更强的吸附能力^[7-9]。本文分别采用茶碱和咖啡因作为烙印分子,以甲基丙烯酸等为功能单体,在不同条件下制备了多种非共价型分子烙印聚合物,并系统地考察了其作 为HPLC固定相对咖啡因和茶碱的分离能力,同时也对烙印分子应具备的条件加以探讨。  相似文献   

6.
超分子聚合物是超分子化学与高分子化学交叉的前沿研究领域,近年来受到了国内外研究学者的广泛关注.可控制备超分子聚合物对于研究超分子聚合物的结构与性能关系、设计合成特定功能的超分子聚合物具有重要的意义.本文将总结通过超分子单体的共价聚合反应以制备超分子聚合物的方法.不同于传统的制备超分子聚合物的方法,超分子单体的共价聚合方法将不易调控的非共价聚合转化为可控的共价聚合,为实现超分子聚合物的可控制备提供了新思路.  相似文献   

7.
分子烙印传感器的研究进展   总被引:12,自引:5,他引:7  
刘勤  周永新  刘荫棠 《分析化学》1999,27(11):1341-1347
分子烙印技术是制备具有选择性分子识别能力的聚合物的新兴技术,其应用之一是将分子烙印聚合物用作分析化学中化学传感器的识别元件。本文综述了分子烙印技术的原理方法及其在传感器方面的应用,评述了分子烙印传感器的发展方向,展望了其在有机磷化合物检测中的应用前景。  相似文献   

8.
以类雌性激素双酚A为模板分子,选取4-乙烯基吡啶作为功能单体,在极性溶剂甲醇中,通过非共价键完成自组装过程,沉淀聚合制备对双酚A分子具有高度选择性识别和亲和力的分子印迹聚合物.采用紫外-可见光谱研究了双酚A和4-乙烯基吡啶的配合方式以及配位比,结果表明双酚A与4-乙烯基吡啶以配位比1∶2的方式,在极性溶剂中,无法以常用的氢键形成超分子配合物,却可以π-π堆积这种非共价键完成自组装过程.通过红外谱图,验证了沉淀聚合法制备的印迹聚合物可以完成双酚A的印迹和可逆分离.通过扫描电镜和等温吸附实验考察了分子印迹聚合物对模板分子的特异性识别和选择性吸附机理,印迹聚合物的特异性吸附容量为37.39μmol/g,印迹指数为4.31;对其结构类似物四溴双酚A和苯酚的分离因子分别为2.51和2.06,同时对莠去津,萘普生和槲皮素的分离因子分别为2.14,2.26和2.63,证实了分子印迹聚合物在极性溶剂中可以对双酚A分子进行很好的特异性识别,并且识别环境更接近天然分子环境.  相似文献   

9.
分子烙印技术在分析化学中的应用   总被引:6,自引:0,他引:6  
分子烙印技术是一种制备具有特定选择性和亲合性的分子识别材料的技术。它在烙印分子存在的情况下,功能性单体与交联剂共聚制得高交联的聚合物网络,移去烙印分子后就得到了对烙印分子记忆效应的分子烙印聚合物。它在分析化学,催化和有机合成等领域都具有应用价值。该文主要介绍了烙印聚合物在分析化学中的应用研究,着重于它在色谱技术中的应用,尤其是在毛细管电色谱中的应用。最后对该技术的发展前景进行了讨论。  相似文献   

10.
溶剂对香兰素分子印迹聚合物制备的影响   总被引:1,自引:0,他引:1  
本文考察了5种溶剂对分子印迹聚合物制备过程的影响.在不同的溶剂体系中,模板分子、功能单体、交联剂间的摩尔比均在1:5:20时达到最好,但最佳反应温度随溶剂的不同而不同.所制备的印迹聚合物的吸附等温线、选择性吸附实验表明:极性溶剂有利于聚合反应的进行,尤以二甲亚砜溶剂为佳,所制备的聚合物对香兰素的选择性吸附高达91%.  相似文献   

11.
Ionic liquids are also called “designer solvents.” In this article, we calculated the interaction energy of four ionic liquids with a template by molecular dynamics simulation. A simple approach was used to prepare biomacromolecule molecularly imprinted polymers for adsorbent and separation thymopentin (Tp5). In order to overcome intrinsic and increase structural selectivity, surface-initiated ATRP and ionic liquids (ILs) as functional monomer were used to prepare Fe3O4 molecularly imprinted polymers. Selective adsorption was applied to investigate the interactions between the polymers and lysine, phenylalanine, glutathione (GSH), and hemoglobin. The results demonstrated that Fe3O4 MIPs with 1-vinyl-3-ethyl acetate imidazolium chloride as functional monomer demonstrated high isolation and recognition of performance to the Tp5.  相似文献   

12.
Monodisperse molecularly imprinted polymers for strychnine were prepared by precipitation polymerization and multistep swelling and polymerization, respectively. In precipitation polymerization, methacrylic acid and divinylbenzene were used as a functional monomer and crosslinker, respectively, while in multistep swelling and polymerization, methacrylic acid and ethylene glycol dimethacrylate were used as a functional monomer and crosslinker, respectively. The retention and molecular recognition properties of the molecularly imprinted polymers prepared by both methods for strychnine were evaluated using a mixture of sodium phosphate buffer and acetonitrile as a mobile phase by liquid chromatography. In addition to shape recognition, ionic and hydrophobic interactions could affect the retention of strychnine in low acetonitrile content. Furthermore, molecularly imprinted polymers prepared by both methods could selectively recognize strychnine among solutes tested. The retention factors and imprinting factors of strychnine on the molecularly imprinted polymer prepared by precipitation polymerization were 220 and 58, respectively, using 20 mM sodium phosphate buffer (pH 6.0)/acetonitrile (50:50, v/v) as a mobile phase, and those on the molecularly imprinted polymer prepared by multistep swelling and polymerization were 73 and 4.5. These results indicate that precipitation polymerization is suitable for the preparation of a molecularly imprinted polymer for strychnine. Furthermore, the molecularly imprinted polymer could be successfully applied for selective extraction of strychnine in nux‐vomica extract powder.  相似文献   

13.
Methyltriphenylphosphonium bromide/chalcone/formic acid, a green ternary deep eutectic solvent, was applied as a functional monomer and dummy template simultaneously in the synthesis of a new molecularly imprinted polymer. Ternary deep eutectic solvent based molecularly imprinted polymers are used as a solid‐phase extraction sorbent in the separation and purification of rutin and quercetin from Herba Artemisiae Scopariae combined with high‐performance liquid chromatography. Fourier transform infrared spectroscopy and field‐emission scanning electron microscopy were applied to characterize the deep eutectic solvent based molecularly imprinted polymers synthesized using different molar ratios of chalcone. The static and competitive adsorption tests were performed to examine the recognition ability of the molecularly imprinted polymers to rutin and quercetin. The ternary deep eutectic solvent consisting of formic acid/chalcone/methyltriphenylphosphonium bromide (1:0.05:0.5) had the best molecular recognition effect. After optimization of the washing solvents (methanol/water, 1:9) and eluting solvents (acetonitrile/acetic acid, 9:1), a reliable analytical method was developed for strong recognition towards rutin and quercetin in Herba Artemisiae Scopariae with satisfactory extraction recoveries (rutin: 92.48%, quercetin: 94.23%). Overall, the chalcone ternary deep eutectic solvent‐based molecularly imprinted polymer coupled with solid‐phase extraction is an effective method for the selective purification of multiple bioactive compounds in complex samples.  相似文献   

14.
Toward improving the selective adsorption performance of molecularly imprinted polymers in strong polar solvents, in this work, a new ionic liquid functional monomer, 1‐butyl‐3‐vinylimidazolium bromide, was used to synthesize sulfamethoxazole imprinted polymer in methanol. The resulting molecularly imprinted polymer was characterized by Fourier transform infrared spectra and scanning electron microscopy, and the rebinding mechanism of the molecularly imprinted polymer for sulfonamides was studied. A static equilibrium experiment revealed that the as‐obtained molecularly imprinted polymer had higher molecular recognition for sulfonamides (e.g., sulfamethoxazole, sulfamonomethoxine, and sulfadiazine) in methanol; however, its adsorption of interferent (e.g., diphenylamine, metronidazole, 2,4‐dichlorophenol, and m‐dihydroxybenzene) was quite low. 1H NMR spectroscopy indicated that the excellent recognition performance of the imprinted polymer was based primarily on hydrogen bond, electrostatic and π‐π interactions. Furthermore, the molecularly imprinted polymer can be employed as a solid phase extraction sorbent to effectively extract sulfamethoxazole from a mixed solution. Combined with high‐performance liquid chromatography analysis, a valid molecularly imprinted polymer‐solid phase extraction protocol was established for extraction and detection of trace sulfamethoxazole in spiked soil and sediment samples, and with a recovery that ranged from 93–107%, and a relative standard deviation of lower than 9.7%.  相似文献   

15.
A series of molecularly imprinted polymers (MIPs) was prepared using quinine as the template molecules by bulk polymerization. The presence of monomer-template solution complexes in non-covalent MIPs systems has been verified by both fluorescence and UV-vis spectrometric detection. The influence of different synthetic conditions (porogen, functional monomer, cross-linkers, initiation methods, monomer-template ratio, etc.) on recognition properties of the polymers was investigated. Scatchard analysis revealed that two classes of binding sites were formed in the imprinted polymer. The corresponding dissociation constants were estimated to be 45.00 micromol l(-1) and 1.42 mmol l(-1), respectively, by utilizing a multi-site recognition model. The binding characteristics of the imprinted polymers were explored in various solvents using equilibrium binding experiments. In the organic media, results suggested that polar interactions (hydrogen bonding, ionic interactions, etc.) between acidic monomer/polymer and template molecules were mainly responsible for the recognition, whereas in aqueous media, hydrophobic interactions had a remarkable non-specific contribution to the overall binding. The specificity of MIP was evaluated by rebinding the other structurally similar compounds. The results indicated that the imprinted polymers exhibited an excellent stereo-selectivity toward quinine.  相似文献   

16.
The uniform-sized spherical molecularly imprinted polymers were successfully prepared through molecular imprinting technology by two-step seed swelling and mini-emulsion polymerization in the aqueous condition using quinine as template molecules and methacrylic acid (MAA) as functional monomer. The polymers were characterized by IR spectra, thermal-weight analysis, scanning electron microscope and laser particle size analysis. The properties of imprinted polymers were investigated in different organic phases and aqueous media. In the organic media, results suggested that polar interactions (hydrogen bonding, ionic interactions) between acidic monomer/polymer and template molecules are mainly responsible for the binding and recognition; whereas in the aqueous medium, a considerable recognition effect was also obtained where the ionic (electrostatic) interaction and hydrophobic interaction play an important role. The experiments of binding different substrates indicated that the MIPs possessed an excellent rebinding ability and inherent selectivity to quinine. __________ Translated from Zhongshan Dcocue Xuebao/Acta Scientianum Natralium University Sunyatseni, 2005, 44(3)(in Chinese)  相似文献   

17.
新型功能单体分子印迹聚合物的研究进展   总被引:2,自引:0,他引:2  
分子印迹聚合物是近年发展起来的新型重要分子识别材料,功能单体是其识别性能最重要的影响因素之一,因此,对新型功能单体分子印迹聚合物的研究越来越受重视.基于分子印迹聚合物在固相萃取、色谱柱分离、传感器等方面的应用,对新型功能单体分子印迹聚合物的研究进展进行了综述.  相似文献   

18.
以对苯二胺(p-PD)为模板分子,分别以甲基丙烯酸(MAA)和丙烯酰胺(AA)为功能单体,制备了p-PD的印迹聚合物P(MAA)和P(AA),采用色谱法考察了其分子识别特性。结果表明,P(AA)对p-PD无明显的印迹效应;而甲醇为流动相时,P(MAA)能够选择性结合p-PD分子(k′=3.57),对p-PD有显著的印迹效应(印迹因子IF=2.95),P(MAA)柱可以实现p-PD与邻苯二胺(o-PD)和对氨基苯甲酸(p-ABA)的色谱分离。通过光谱实验及HF/6-31G*量化理论计算方法,对比研究了p-PD与MAA和AA之间的相互作用。MAA与p-PD能够形成更稳定的复合物,P(MAA)对p-PD具有更好的分子识别能力。研究表明紫外吸收光谱法和荧光光谱法以及量子化学理论计算法可作为功能单体筛选的有效手段;对于荧光模板分子,荧光光谱法具有简便、灵敏等特点。  相似文献   

19.
In this study, new molecularly imprinted polymer (MIP) nanoparticles are designed for selective recognition of different drugs used for the treatment of type 2 diabetes mellitus, i.e. sitagliptin (SG) and metformin (MF). The SG‐ and MF‐imprinted polymer nanoparticles are synthesized by free‐radical initiated polymerization of the functional monomers: methacrylic acid and methyl methacrylate; and the crosslinker: ethylene glycol dimethacrylate. The surface morphology of resultant MIP nanoparticles is studied by atomic force microscopy. Fourier transform infrared spectra of MIP nanoparticles suggest the presence of reversible, non‐covalent interactions between the template and the polymer. The effect of pH on the rebinding of antidiabetic drugs with SG‐ and MF‐imprinted polymers is investigated to determine the optimal experimental conditions. The molecular recognition characteristics of SG‐ and MF‐imprinted polymers for the respective drug targets are determined at low concentrations of SG (50–150 ppm) and MF (5–100 ppm). In both cases, the MIP nanoparticles exhibit higher binding response compared to non‐imprinted polymers. Furthermore, the MIPs demonstrate high selectivity with four fold higher responses toward imprinted drugs targets, respectively. Recycled MIP nanoparticles retain 90% of their drug‐binding efficiency, which makes them suitable for successive analyses with significantly preserved recognition features.  相似文献   

20.
Cholesterol-imprinted polymers were prepared in bulk polymerization by the methods of covalent and non-covalent imprinting. The former involved the use of a template-containing monomer, cholesteryl (4-vinyl)phenyl carbonate, while the latter used the complexes of template and functional monomer, methacrylic acid or 4-vinylpyridine prior to polymerization. Columns packed with these molecularly imprinted polymers (MIPs) were all able to separate cholesterol from other steroids. For different combinations of cholesterol and beta-estradiol concentrations in a total of 1 g/l, the peak retention times for both compounds were nearly constant. The adsorption capacity for cholesterol onto the MIPs was found to significantly depend on the use of functional monomers, but the selectivity factors were only slightly different from each other at 2.9 to 3.2 since the separation was all based on the specific binding of cholesterol to recognition sites formed on the imprinted polymers. The capacity factors for cholesterol were determined to be 3.5, 4.0 and 3.1, respectively, for covalently imprinted, 4-vinylpyridine-based, and methacrylic acid-based non-covalently imprinted polymers. However, the covalently imprinted polymer was found to have a higher adsorption capacity for cholesterol and about fivefold higher chromatographic efficiency for cholesterol separation, in comparison with non-covalently imprinted polymers. The use of covalent imprinting significantly reduced the peak broadening and tailing. This advantage along with constant retention suggests that the covalently imprinted polymer has potential for quantitative analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号